Android 浅谈模块化、组件化、插件化、热修复的简单理解
Android组件化方案
Android组件化之终极方案
不同特点:
- 模块化(lib)主要解决问题是重用问题,不强调单独编译
- 组件化(lib)主要解决问题是功能拆分,强调单独编译
- 插件化(application)是所有组件都为apk的特殊组件化,特点可热更新
通讯方式不同点:
- 模块化相互引入,需要引入需要的module
- 组件化通讯方式分为隐式和路由。
- 插件化本身是不同进程,因此是binder机制进程间通讯。
EventBus 使用(全面分析,细节提醒)
一文彻底搞懂EventBus 3.0原理
public class EventMessage {
private String messageType;
private String message;
public EventMessage(String messageType, String message) {
this.messageType = messageType;
this.message = message;
}
@Override
public String toString() {
return "EventMessage{" +
"messageType='" + messageType + '\'' +
", message='" + message + '\'' +
'}';
}
public String getMessageType() {
return messageType;
}
public void setMessageType(String messageType) {
this.messageType = messageType;
}
public String getMessage() {
return message;
}
public void setMessage(String message) {
this.message = message;
}
}
@Override
protected void onStart() {
super.onStart();
//注册EventBus
EventBus.getDefault().register(this);
}
@Override
protected void onStop() {
super.onStop();
//取消注册
EventBus.getDefault().unregister(this);
}
在需要接受事件的类中进行好register之后,需要在该类中创建一个方法来接收事件消息。
/* 接收事件
* 该方法有且只有一个参数。
* 该方法必须是public修饰符修饰,不能用static关键字修饰,不能是抽象的(abstract)
* 该方法需要用@Subscribe注解进行修饰。
*/
@Subscribe(threadMode = ThreadMode.MAIN,sticky = true,priority = 1)
public void onReceiveMsg(EventMessage eventMessage) {
Log.i(TAG, "onReceiveMsg: " + eventMessage.toString());
}
//发送事件
EventMessage msg = new EventMessage("1","Hello MainActivity");
EventBus.getDefault().post(msg);
@Subscribe是EventBus自定义的一种注解,他可接收三个参数。ThreadMode、boolean sticky、int priority。
ThreadMode
sticky
sticky是一个boolean型的参数,默认值是false,表示不启用sticky特性。那么sticky特性是什么呢?
priority
android开发网络框架OkHttp
一文了解OKHttp3全
final Dispatcher dispatcher;//调度器
final Proxy proxy;//代理
final List<Protocol> protocols;//协议
final List<ConnectionSpec> connectionSpecs;//传输层版本和连接协议
final List<Interceptor> interceptors;//拦截器
final List<Interceptor> networkInterceptors;//网络拦截器
final EventListener.Factory eventListenerFactory;
final ProxySelector proxySelector;//代理选择器
final CookieJar cookieJar;//cookie
final Cache cache;//cache 缓存
final InternalCache internalCache;//内部缓存
final SocketFactory socketFactory;//socket 工厂
final SSLSocketFactory sslSocketFactory;//安全套层socket工厂 用于https
final CertificateChainCleaner certificateChainCleaner;//验证确认响应书,适用HTTPS 请求连接的主机名
final HostnameVerifier hostnameVerifier;//主机名字确认
final CertificatePinner certificatePinner;//证书链
final Authenticator proxyAuthenticator;//代理身份验证
final Authenticator authenticator;//本地省份验证
final ConnectionPool connectionPool;//链接池 复用连接
final Dns dns; //域名
final boolean followSslRedirects;//安全套接层重定向
final boolean followRedirects;//本地重定向
final boolean retryOnConnectionFailure;//重试连接失败
final int connectTimeout;//连接超时
final int readTimeout;//读取超时
final int writeTimeout;//写入超时
Retrofit2详解
Retrofit2 源码解析
Retrofit非常巧妙的用注解来描述一个HTTP请求,将一个HTTP请求抽象成一个Java接口,然后用了Java动态代理的方式,动态的将这个接口的注解“翻译”成一个HTTP请求,最后再执行这个HTTP请求
RxJava 的观察者模式:
RxJava 有四个基本概念:Observable
(可观察者,即被观察者)、 Observer
(观察者)、 subscribe
(订阅)、事件。Observable
和 Observe
r 通过 subscribe()
方法实现订阅关系,从而 Observable
可以在需要的时候发出事件来通知 Observer
。
与传统观察者模式不同, RxJava 的事件回调方法除了普通事件onNext()
(相当于 onClick() / onEvent())之外,还定义了两个特殊的事件:onCompleted()
和 onError()
。
onCompleted()
: 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的 onNext()
发出时,需要触发 onCompleted()
方法作为标志。onError():
事件队列异常。在事件处理过程中出异常时,onError()
会被触发,同时队列自动终止,不允许再有事件发出。onCompleted()
和 onError()
有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted()
和 onError()
二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。我们再来按照观察者模式的运作流程和流式Api的写法复习一遍:
//创建被观察者,是事件传递的起点
Observable.just(getFilePath())
//指定了被观察者执行的线程环境
.subscribeOn(Schedulers.newThread())
//将接下来执行的线程环境指定为io线程
.observeOn(Schedulers.io())
//使用map操作来完成类型转换
.map(new Func1<String, Bitmap>() {
@Override
public Bitmap call(String s) {
//显然自定义的createBitmapFromPath(s)方法,是一个极其耗时的操作
return createBitmapFromPath(s);
}
})
//将后面执行的线程环境切换为主线程
.observeOn(AndroidSchedulers.mainThread())
//实现订阅
.subscribe(
//创建观察者,作为事件传递的终点处理事件
new Subscriber<Bitmap>() {
@Override
public void onCompleted() {
Log.d("DDDDDD","结束观察...\n");
}
@Override
public void onError(Throwable e) {
//出现错误会调用这个方法
}
@Override
public void onNext(Bitmap s) {
//处理事件
showBitmap(s)
}
);
-Action1 是RxJava一个接口,它同样只有一个方法 call(T param),这个方法也无返回值,但有一个参数;RxJava 是提供了多个 ActionX 形式的接口 (例如 Action2, Action3) 的,它们可以被用以包装不同的无返回值的方法。
Func1 它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1 和 Action 的区别在于, Func1 包装的是有返回值的方法. FuncX 也有多个,用于不同参数个数的方法。FuncX 和 ActionX 的区别在 FuncX 包装的是有返回值的方法
除了 Observer
接口之外,RxJava 还内置了一个实现了 Observer
的抽象类:Subscriber
。 Subscriber
对 Observer
接口进行了一些扩展,但他们的基本使用方式是完全一样的:
在 RxJava 的subscribe
过程中,Observer
也总是会先被转换成一个 Subscriber
再使用。所以如果你只想使用基本功能,选择Observer
和 Subscriber
是完全一样的。它们的区别对于使用者来说主要有两点:
onStart()
: 这是 Subscriber
增加的方法。它会在 subscribe
刚开始,而事件还未发送之前被调用,可以用于做一些准备工作,例如数据的清零或重置。这是一个可选方法,默认情况下它的实现为空。需要注意的是,如果对准备工作的线程有要求(例如弹出一个显示进度的对话框,这必须在主线程执行), onStart()
就不适用了,因为它总是在 subscribe
所发生的线程被调用,而不能指定线程。要在指定的线程来做准备工作,可以使用 doOnSubscribe()
方法,具体可以在后面的文中看到。unsubscribe()
: 这是 Subscriber
所实现的另一个接口 Subscription
的方法,用于取消订阅。在这个方法被调用后,Subscriber
将不再接收事件。一般在这个方法调用前,可以使用isUnsubscribed()
先判断一下状态。 unsubscribe()
这个方法很重要,因为在subscribe()
之后, Observable
会持有 Subscriber
的引用,这个引用如果不能及时被释放,将有内存泄露的风险。所以最好保持一个原则:要在不再使用的时候尽快在合适的地方(例如 onPause() onStop() 等方法中)调用 unsubscribe()
来解除引用关系,以避免内存泄露的发生。延伸:doOnSubscribe()
在前面讲 Subscriber
的时候,提到过 Subscriber
的 onStart()
可以用作流程开始前的初始化。然而 onStart()
由于在 subscribe()
发生时就被调用了,因此不能指定线程,而是只能执行在 subscribe()
被调用时的线程。这就导致如果onStart()
中含有对线程有要求的代码(例如在界面上显示一个 ProgressBar,这必须在主线程执行),将会有线程非法的风险,因为有时你无法预测 subscribe()
将会在什么线程执行。
而与 Subscriber.onStart()
相对应的,有一个方法 Observable.doOnSubscribe()
。它和 Subscriber.onStart()
同样是在subscribe()
调用后而且在事件发送前执行,但区别在于它可以指定线程。默认情况下, doOnSubscribe()
执行在 subscribe()
发生的线程;而如果在 doOnSubscribe()
之后有 subscribeOn()
的话,它将执行在离它最近的 subscribeOn()
所指定的线程。
示例代码:
Observable.create(onSubscribe)
.subscribeOn(Schedulers.io())
.doOnSubscribe(new Action0() {
@Override
public void call() {
progressBar.setVisibility(View.VISIBLE); // 需要在主线程执行
}
})
.subscribeOn(AndroidSchedulers.mainThread()) // 指定主线程
.observeOn(AndroidSchedulers.mainThread())
.subscribe(subscriber);
如上,在 doOnSubscribe()
的后面跟一个 subscribeOn()
,就能指定准备工作的线程了。
异步(线程调度)
Scheduler 的 API
Schedulers.immediate()
: 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler。Schedulers.newThread()
: 总是启用新线程,并在新线程执行操作。Schedulers.io()
: I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。Schedulers.computation()
: 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。- 另外, Android 还有一个专用的
AndroidSchedulers.mainThread()
,它指定的操作将在 Android 主线程运行。
subscribeOn 它指示Observable在一个指定的调度器上创建(只作用于被观察者创建阶段)。只能指定一次,如果指定多次则以第一次为准。
observeOn 指定在事件传递(加工变换)和最终被处理(观察者)的发生在哪一个调度器。可指定多次,每次指定完都在下一步生效。
嗯,基本上我们就把RxJava的骨架就讲完了,总结一下:
- 创建被观察者,产生事件
- 设置事件传递过程中的过滤,合并,变换等加工操作。
- 订阅一个观察者对象,实现事件最终的处理。
map:类型变换
Observable.from(number)
.map(new Func1<Integer, Boolean>() {
@Override
public Boolean call(Integer integer) {
return (integer<3); //判断是否小于3
}
})
.subscribe(new Action1<Boolean>() {
@Override
public void call(Boolean aBoolean) {
mText.append("\n观察到输出结果:\n");
mText.append(aBoolean.toString());
}
});
flatmap: flatMap() 和 map() 有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map() 不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。
Observable.from(getSchoolClass())
.flatMap(new Func1<SchoolClass, Observable<Student>>() {
@Override
public Observable<Student> call(SchoolClass schoolClass) {
//将Student列表使用from方法一个一个发出去
return Observable.from(schoolClass.getStudents());
}
})
.subscribe(new Action1<Student>() {
@Override
public void call(Student student) {
mText.append("打印单个学生信息:\n");
mText.append("name:"+student.name+" age: "+student.age+"\n");
}
});
merge:两个任务并发进行,全部处理完毕之后在更新数据
filter: 过滤出满足条件的数据
filter(new Func1<Integer, Boolean>() {
@Override
public Boolean call(Integer integer) {
return integer%2!=0;
}
})
take:截取数据
.take(4) //取前4个
.takeLast(2)//取前四个中的后两个: 5 7
Retrofit 除了提供了传统的 Callback
形式的 API,还有 RxJava 版本的 Observable
形式 API。下面我用对比的方式来介绍 Retrofit 的 RxJava 版 API 和传统版本的区别。
以获取一个 User
对象的接口作为例子。使用Retrofit 的传统 API,你可以用这样的方式来定义请求:
@GET("/user")
public void getUser(@Query("userId") String userId, Callback<User> callback);
在程序的构建过程中, Retrofit 会把自动把方法实现并生成代码,然后开发者就可以利用下面的方法来获取特定用户并处理响应:
getUser(userId, new Callback<User>() {
@Override
public void success(User user) {
userView.setUser(user);
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
};
而使用 RxJava 形式的 API,定义同样的请求是这样的:
@GET("/user")
public Observable<User> getUser(@Query("userId") String userId);
使用的时候是这样的:
getUser(userId)
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<User>() {
@Override
public void onNext(User user) {
userView.setUser(user);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable error) {
// Error handling
...
}
});
看到区别了吗?
当 RxJava 形式的时候,Retrofit 把请求封装进 Observable
,在请求结束后调用 onNext()
或在请求失败后调用 onError()
。
对比来看,Callback
形式和 Observable
形式长得不太一样,但本质都差不多,而且在细节上 Observable
形式似乎还比 Callback
形式要差点。那 Retrofit 为什么还要提供 RxJava 的支持呢?
因为它好用啊!从这个例子看不出来是因为这只是最简单的情况。而一旦情景复杂起来,Callback
形式马上就会开始让人头疼。比如:
假设这么一种情况:你的程序取到的User
并不应该直接显示,而是需要先与数据库中的数据进行比对和修正后再显示。使用 Callback
方式大概可以这么写:
getUser(userId, new Callback<User>() {
@Override
public void success(User user) {
processUser(user); // 尝试修正 User 数据
userView.setUser(user);
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
};
有问题吗?
很简便,但不要这样做。为什么?因为这样做会影响性能。数据库的操作很重,一次读写操作花费 10~20ms 是很常见的,这样的耗时很容易造成界面的卡顿。所以通常情况下,如果可以的话一定要避免在主线程中处理数据库。所以为了提升性能,这段代码可以优化一下:
getUser(userId, new Callback<User>() {
@Override
public void success(User user) {
new Thread() {
@Override
public void run() {
processUser(user); // 尝试修正 User 数据
runOnUiThread(new Runnable() { // 切回 UI 线程
@Override
public void run() {
userView.setUser(user);
}
});
}).start();
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
};
性能问题解决,但……这代码实在是太乱了,迷之缩进啊!杂乱的代码往往不仅仅是美观问题,因为代码越乱往往就越难读懂,而如果项目中充斥着杂乱的代码,无疑会降低代码的可读性,造成团队开发效率的降低和出错率的升高。
这时候,如果用 RxJava 的形式,就好办多了。 RxJava 形式的代码是这样的:
getUser(userId)
.doOnNext(new Action1<User>() {
@Override
public void call(User user) {
processUser(user);
})
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<User>() {
@Override
public void onNext(User user) {
userView.setUser(user);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable error) {
// Error handling
...
}
});
后台代码和前台代码全都写在一条链中,明显清晰了很多。
再举一个例子:假设 /user
接口并不能直接访问,而需要填入一个在线获取的token
,代码应该怎么写?
Callback
方式,可以使用嵌套的 Callback
:
@GET("/token")
public void getToken(Callback<String> callback);
@GET("/user")
public void getUser(@Query("token") String token, @Query("userId") String userId, Callback<User> callback);
...
getToken(new Callback<String>() {
@Override
public void success(String token) {
getUser(token, userId, new Callback<User>() {
@Override
public void success(User user) {
userView.setUser(user);
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
};
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
});
倒是没有什么性能问题,可是迷之缩进毁一生,你懂我也懂,做过大项目的人应该更懂。
而使用 RxJava 的话,代码是这样的:
@GET("/token")
public Observable<String> getToken();
@GET("/user")
public Observable<User> getUser(@Query("token") String token, @Query("userId") String userId);
...
getToken()
.flatMap(new Func1<String, Observable<User>>() {
@Override
public Observable<User> onNext(String token) {
return getUser(token, userId);
})
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<User>() {
@Override
public void onNext(User user) {
userView.setUser(user);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable error) {
// Error handling
...
}
});
用一个 flatMap() 就搞定了逻辑,依然是一条链。
使用BindingAdapter简化图片加载
学习Android Jetpack? 实战和教程这里全都有!
基于Jetpack的全系列加实战 app 教程
Android开发 LiveData与MutableLiveData详解
我们为什么要使用LiveData和ViewModel呢?他们有什么优势呢?
在LiveData出现之前,一般状态分发我们使用EventBus或者RxJava,这些都很容易出现内存泄漏问题,而且需要我们手动管理生命周期。而LiveData则规避了这些问题,LiveData是一个持有Activity、Fragment生命周期的数据容器。当数据源发生变化的时候,通知它的观察者更新UI界面。同时它只会通知处于Active状态的观察者更新界面,如果某个观察者的状态处于Paused或Destroyed时那么它将不会收到通知。所以不用担心内存泄漏问题。
ViewModel将视图和逻辑进行了分离。Activity或者Fragment只负责UI显示部分。具体的网络请求或者数据库操作则有ViewModel负责。这样避免了视图的臃肿和代码的耦合。通过下面这张ViewModel生命周期可以看出,当屏幕发生旋转而导致Activity被销毁并重新创建时,ViewModel并没有被销毁,从而帮助我们在Activity重新创建后获取数据更新UI。它和onSaveInstanceState方法相比更有优势,因为onSaveInstanceState方法只不适合大量数据的恢复操作,只能恢复少量并且被序列化和反序列化的数据,而ViewModel不仅支持大量数据,还不需要序列化、反序列化操作。