Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20708 Accepted Submission(s): 6886
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
题目大意:
给出子串划分的集合个数,再给出子串的长度和子串的元素,求子串的和最大为多少?
解题思路:
dp[i][j]表示划分成i组,第j个元素的最大子串和,可列出状态转移方程:dp[i][j] = max(dp[i][j-1] + a[j],dp[i-1][k] + a[j]),(其中k为1~j-1),这个方程的意思是:如果子串划分的个数相等,那我们就加上下一个元素,否则如果不相等,那么就等于上一个集合的子串和加上一个元素。本题由于i和j的取值特别大,很明显二维数组肯定存不下,所以要考虑用一维数组代替二维数组,再次考虑时间复杂度,如果枚举k的话,必然超时,所以我们可以只存取上一个集合子串和的最大值,所以最后状态转移方程为dp[j] = max(dp[j-1]+a[j],pre[j-1]+a[j]),其中pre[j-1]就是上一个状态子串的最大值,也是运用了dp空间换时间的思想.
都说dp很考验编程思维和代码功底,的确如此,首先dp动态规划的确太灵活了,而且单纯写出状态转移方程有时候还不够,经常面临了超时或者超内存的风险,所以必须还要优化,有时候运用二维降一维的思路,或者是运用滚动数组降低空间复杂度,时间复杂度就不用说了,本身DP的核心思想就用保存上一次计算过的结果,避免重复计算.就本题而言前面计算过的pre数组可以直接拿来用,再次计算就没有必要了,所以灵活的变通和多练习是解决dp动态规划最核心的方法.
其中本题参考了Kuangbin大神的思想.
AC代码:
#include
#include
#include
#include
using namespace std;
const int maxn = 1000005;
int a[maxn];
int dp[maxn];
int pre[maxn];
const int inf = 0x3f3f3f3f;
int main()
{
int m,n;
int i,j;
//freopen("1.txt","r",stdin);
while(scanf("%d%d",&m,&n) != EOF)
{
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
dp[0] = 0;
memset(pre,0,sizeof(pre));
int Max;
for(i=1;i<=m;i++)
{
Max = -inf;
for(j=i;j<=n;j++)
{
dp[j] = max(dp[j-1],pre[j-1]) + a[j];
pre[j-1] = Max;
if(dp[j] > Max)
{
Max = dp[j];
}
}
}
printf("%d\n",Max);
}
return 0;
}