第七章 微分方程(二)

目录

  • 总习题七
    • 2.以下两题给出四个结论,从中选出一个正确的结论:
      • (1)设非齐次线性微分方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)有两个不同的解: y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) C C C为任意常数,则该方程的通解是( \quad ( A ) C [ y 1 ( x ) − y 2 ( x ) ] ( B ) y 1 ( x ) + C [ y 1 ( x ) − y 2 ( x ) ] ( C ) C [ y 1 ( x ) + C 2 ( x ) ] ( D ) y 1 ( x ) + C [ y 1 ( x ) + y 2 ( x ) ] \begin{aligned}&(A)C[y_1(x)-y_2(x)]\\&(B)y_1(x)+C[y_1(x)-y_2(x)]\\&(C)C[y_1(x)+C_2(x)]\\&(D)y_1(x)+C[y_1(x)+y_2(x)]\end{aligned} (A)C[y1(x)y2(x)](B)y1(x)+C[y1(x)y2(x)](C)C[y1(x)+C2(x)](D)y1(x)+C[y1(x)+y2(x)]
    • 3.求以下列各式所表示的函数为通解的微分方程:
      • (1) ( x + C ) 2 + y 2 = 1 ( 其中C为任意常数 ) (x+C)^2+y^2=1(\text{其中C为任意常数}) (x+C)2+y2=1(其中C为任意常数)
    • 4.求下列微分方程的通解:
      • (3) d y d x = y 2 ( ln ⁡ y − x ) ; \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{y}{2(\ln y-x)}; dxdy=2(lnyx)y;
      • (4) d y d x + x y − x 3 y 3 = 0 ; \cfrac{\mathrm{d}y}{\mathrm{d}x}+xy-x^3y^3=0; dxdy+xyx3y3=0;
      • (5) y ′ ′ + y ′ 2 + 1 = 0 ; y''+y'^2+1=0; y+y2+1=0;
      • (9) ( y 4 − 3 x 2 ) d y + x y d x = 0 ; (y^4-3x^2)\mathrm{d}y+xy\mathrm{d}x=0; (y43x2)dy+xydx=0;
      • (10) y ′ + x = x 2 + y . y'+x=\sqrt{x^2+y}. y+x=x2+y .
    • 5.求下列微分方程满足所给初值条件的特解:
      • (1) y 3 d x + 2 ( x 2 − x y 2 ) d y = 0 , x = 1 时 y = 1 ; y^3\mathrm{d}x+2(x^2-xy^2)\mathrm{d}y=0,x=1\text{时}y=1; y3dx+2(x2xy2)dy=0,x=1y=1;
      • (3) 2 y ′ ′ − sin ⁡ 2 y = 0 , x = 0 时 y = π 2 , y ′ = 1 ; 2y''-\sin2y=0,x=0\text{时}y=\cfrac{\pi}{2},y'=1; 2ysin2y=0,x=0y=2π,y=1;
    • 12.求下列常系数线性微分方程组:
      • (1) { d x d t + 2 d y d t + y = 0 , 3 d x d t + 2 x + 4 d y d t + 3 y = t ; \begin{cases}\cfrac{\mathrm{d}x}{\mathrm{d}t}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\3\cfrac{\mathrm{d}x}{\mathrm{d}t}+2x+4\cfrac{\mathrm{d}y}{\mathrm{d}t}+3y=t;\end{cases} dtdx+2dtdy+y=0,3dtdx+2x+4dtdy+3y=t;
      • (2) { d 2 x d t 2 + 2 d x d t + x + d y d t + y = 0 , d x d t + x + d 2 y d t 2 + 2 d y d t + y = e t . \begin{cases}\cfrac{\mathrm{d}^2x}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=e^t.\end{cases} dt2d2x+2dtdx+x+dtdy+y=0,dtdx+x+dt2d2y+2dtdy+y=et.
  • 写在最后

总习题七

2.以下两题给出四个结论,从中选出一个正确的结论:

(1)设非齐次线性微分方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)有两个不同的解: y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x) C C C为任意常数,则该方程的通解是( \quad ( A ) C [ y 1 ( x ) − y 2 ( x ) ] ( B ) y 1 ( x ) + C [ y 1 ( x ) − y 2 ( x ) ] ( C ) C [ y 1 ( x ) + C 2 ( x ) ] ( D ) y 1 ( x ) + C [ y 1 ( x ) + y 2 ( x ) ] \begin{aligned}&(A)C[y_1(x)-y_2(x)]\\&(B)y_1(x)+C[y_1(x)-y_2(x)]\\&(C)C[y_1(x)+C_2(x)]\\&(D)y_1(x)+C[y_1(x)+y_2(x)]\end{aligned} (A)C[y1(x)y2(x)](B)y1(x)+C[y1(x)y2(x)](C)C[y1(x)+C2(x)](D)y1(x)+C[y1(x)+y2(x)]

   y 1 ( x ) − y 2 ( x ) y_1(x)-y_2(x) y1(x)y2(x)是对应的齐次方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)的非零解,从而由线性微分方程的性质定理知 C [ y 1 ( x ) − y 2 ( x ) ] C[y_1(x)-y_2(x)] C[y1(x)y2(x)]是齐次方程的通解,再由线性微分方程解的结构定理知 y 1 ( x ) + C [ y 1 ( x ) − y 2 ( x ) ] y_1(x)+C[y_1(x)-y_2(x)] y1(x)+C[y1(x)y2(x)]是原方程的解。故选(B)。(这道题主要利用了线性微分方程的结构定理求解

3.求以下列各式所表示的函数为通解的微分方程:

(1) ( x + C ) 2 + y 2 = 1 ( 其中C为任意常数 ) (x+C)^2+y^2=1(\text{其中C为任意常数}) (x+C)2+y2=1(其中C为任意常数)

  将 ( x + C ) 2 + y 2 = 1 (x+C)^2+y^2=1 (x+C)2+y2=1两端关于 x x x求导,得
x + C + y y ′ = 0. x+C+yy'=0. x+C+yy=0.
  即有
C = − x − y y ′ . C=-x-yy'. C=xyy.
  将其代入 ( x + C ) 2 + y 2 = 1 (x+C)^2+y^2=1 (x+C)2+y2=1中,得
y 2 ( 1 + y ′ ) 2 = 1. y^2(1+y')^2=1. y2(1+y)2=1.
这道题主要利用了求导的方法

4.求下列微分方程的通解:

(3) d y d x = y 2 ( ln ⁡ y − x ) ; \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{y}{2(\ln y-x)}; dxdy=2(lnyx)y;

  原方程可表示为 d x d y + 2 y x = 2 ln ⁡ y y \cfrac{\mathrm{d}x}{\mathrm{d}y}+\cfrac{2}{y}x=\cfrac{2\ln y}{y} dydx+y2x=y2lny,由一阶线性方程的通解公式,得
x = e − ∫ 2 y d y ( ∫ 2 ln ⁡ y y e ∫ 2 y d y d y + C ) = 1 y 2 ( ∫ 2 y ln ⁡ y d y + C ) = 1 y 2 ( y 2 ln ⁡ y ) \begin{aligned} x&=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int\cfrac{2\ln y}{y}e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)\\ &=\cfrac{1}{y^2}\left(\displaystyle\int2y\ln y\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(y^2\ln y\right) \end{aligned} x=ey2dy(y2lnyey2dydy+C)=y21(2ylnydy+C)=y21(y2lny)
  故原方程的通解为
这道题利用了反向的求导

(4) d y d x + x y − x 3 y 3 = 0 ; \cfrac{\mathrm{d}y}{\mathrm{d}x}+xy-x^3y^3=0; dxdy+xyx3y3=0;

  原方程为伯努利方程 y ′ + x y = x 3 y 3 y'+xy=x^3y^3 y+xy=x3y3。该方程两端同除以 y 3 y^3 y3后成为
y ′ y 3 + x 1 y 2 = x 3 . \cfrac{y'}{y^3}+x\cfrac{1}{y^2}=x^3. y3y+xy21=x3.
  令 1 y 2 = z \cfrac{1}{y^2}=z y21=z,则 − 2 y ′ y 3 = z ′ -2\cfrac{y'}{y^3}=z' 2y3y=z,且原方程化为
z ′ − 2 x z = − 2 x 3 . z'-2xz=-2x^3. z2xz=2x3.
  得
z = e − ∫ 2 x d x ( ∫ − 2 x 3 e ∫ 2 x d x d x + C ) = e x 2 ( ∫ − 2 x 3 e − x 2 d x + C ) = e x 2 ( x 2 e − x 2 − ∫ − 2 x e − x 2 d x + C ) = e x 2 ( x 2 e − x 2 + e − x 2 + C ) = x 2 + 1 + C e x 2 . \begin{aligned} z&=e^{-\int2x\mathrm{d}x}\left(\displaystyle\int-2x^3e^{\int2x\mathrm{d}x}\mathrm{d}x+C\right)=e^{x^2}\left(\displaystyle\int-2x^3e^{-x^2}\mathrm{d}x+C\right)\\ &=e^{x^2}\left(x^2e^{-x^2}-\displaystyle\int-2xe^{-x^2}\mathrm{d}x+C\right)=e^{x^2}\left(x^2e^{-x^2}+e^{-x^2}+C\right)\\ &=x^2+1+Ce^{x^2}. \end{aligned} z=e2xdx(2x3e2xdxdx+C)=ex2(2x3ex2dx+C)=ex2(x2ex22xex2dx+C)=ex2(x2ex2+ex2+C)=x2+1+Cex2.
  代入 z = 1 y 2 z=\cfrac{1}{y^2} z=y21,即得原方程的通解
1 y 2 = C e x 2 + x 2 + 1. \cfrac{1}{y^2}=Ce^{x^2}+x^2+1. y21=Cex2+x2+1.
这道题主要利用了微分方程公式

(5) y ′ ′ + y ′ 2 + 1 = 0 ; y''+y'^2+1=0; y+y2+1=0;

  令 y ′ = p y'=p y=p,则 y ′ ′ = p ′ y''=p' y=p且方程成为
p ′ + p 2 + 1 = 0. p'+p^2+1=0. p+p2+1=0.
  分离变量并积分
∫ d p 1 + p 2 = − ∫ d x . \displaystyle\int\cfrac{\mathrm{d}p}{1+p^2}=-\displaystyle\int\mathrm{d}x. 1+p2dp=dx.
  得 arctan ⁡ p = − x + C 1 \arctan p=-x+C_1 arctanp=x+C1,即
y ′ = p = tan ⁡ ( − x + C 1 ) . y'=p=\tan(-x+C_1). y=p=tan(x+C1).
  于是得通解
y = ∫ − tan ⁡ ( x − C 1 ) d x = ln ⁡ ∣ cos ⁡ ( x − C 1 ) ∣ + C 2 . \begin{aligned} y&=\displaystyle\int-\tan(x-C_1)\mathrm{d}x\\ &=\ln|\cos(x-C_1)|+C_2. \end{aligned} y=tan(xC1)dx=lncos(xC1)+C2.
  或写成 y = ln ⁡ ∣ cos ⁡ ( x + C 1 ) ∣ + C 2 y=\ln|\cos(x+C_1)|+C_2 y=lncos(x+C1)+C2。(这道题主要利用代换法

(9) ( y 4 − 3 x 2 ) d y + x y d x = 0 ; (y^4-3x^2)\mathrm{d}y+xy\mathrm{d}x=0; (y43x2)dy+xydx=0;

  原方程可改写为 d x d y − 3 y x = − y 3 x − 1 \cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{3}{y}x=-y^3x^{-1} dydxy3x=y3x1,这是伯努利方程。在此方程两端同乘以 x x x,得 x d x d y − 3 y x 2 = − y 3 x\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{3}{y}x^2=-y^3 xdydxy3x2=y3
  令 x 2 = z x^2=z x2=z,则 d z d y = 2 x d x d y \cfrac{\mathrm{d}z}{\mathrm{d}y}=2x\cfrac{\mathrm{d}x}{\mathrm{d}y} dydz=2xdydx,且原方程化为
d z d y − − 6 y x = − 2 y 3 . \cfrac{\mathrm{d}z}{\mathrm{d}y}--\cfrac{6}{y}x=-2y^3. dydzy6x=2y3.
  解得
z = e ∫ 6 y d y ( ∫ − 2 y 3 e − ∫ 6 y d y d y + C ) = y 6 ( ∫ − 2 y 3 d y + C ) = y 6 ( 1 y 2 + C ) = y 4 + C y 6 . \begin{aligned} z&=e^{\int\frac{6}{y}\mathrm{d}y}\left(\displaystyle\int-2y^3e^{-\int\frac{6}{y}\mathrm{d}y}\mathrm{d}y+C\right)=y^6\left(\displaystyle\int-\cfrac{2}{y^3}\mathrm{d}y+C\right)\\ &=y^6\left(\cfrac{1}{y^2}+C\right)=y^4+Cy^6. \end{aligned} z=ey6dy(2y3ey6dydy+C)=y6(y32dy+C)=y6(y21+C)=y4+Cy6.
  代入 z = x 2 z=x^2 z=x2,得原方程的通解 x 2 = y 4 + C y 6 x^2=y^4+Cy^6 x2=y4+Cy6。(这道题主要利用了化简和凑整来求解

(10) y ′ + x = x 2 + y . y'+x=\sqrt{x^2+y}. y+x=x2+y .

  令 u = x 2 + y u=\sqrt{x^2+y} u=x2+y ,即 y = u 2 − x 2 y=u^2-x^2 y=u2x2,则 d y d x = 2 u d u d x − 2 x \cfrac{\mathrm{d}y}{\mathrm{d}x}=2u\cfrac{\mathrm{d}u}{\mathrm{d}x}-2x dxdy=2udxdu2x。且原方程化为 2 u d u d x − x = u 2u\cfrac{\mathrm{d}u}{\mathrm{d}x}-x=u 2udxdux=u,即 d u d x − 1 2 ( x u ) = 1 2 \cfrac{\mathrm{d}u}{\mathrm{d}x}-\cfrac{1}{2}\left(\cfrac{x}{u}\right)=\cfrac{1}{2} dxdu21(ux)=21
  又令 x u = v \cfrac{x}{u}=v ux=v,即 u = x v u=xv u=xv,则 d u d x = v + x d v d x \cfrac{\mathrm{d}u}{\mathrm{d}x}=v+x\cfrac{\mathrm{d}v}{\mathrm{d}x} dxdu=v+xdxdv。且原方程化为
v + x d v d x − 1 2 v = 1 2 . v+x\cfrac{\mathrm{d}v}{\mathrm{d}x}-\cfrac{1}{2v}=\cfrac{1}{2}. v+xdxdv2v1=21.
  分离变量得 v d v 2 v 2 − v − 1 = − 1 2 d x x \cfrac{v\mathrm{d}v}{2v^2-v-1}=-\cfrac{1}{2}\cfrac{\mathrm{d}x}{x} 2v2v1vdv=21xdx。积分
− 1 2 ln ⁡ ∣ x ∣ = ∫ v d v 2 v 2 − v − 1 = 1 3 ( ∫ 1 v − 1 d v + ∫ 1 2 v + 1 d v ) = 1 3 [ ln ⁡ ∣ v − 1 ∣ + 1 2 ln ⁡ ∣ 2 v − 1 ∣ ] + C 1 . \begin{aligned} -\cfrac{1}{2}\ln|x|&=\displaystyle\int\cfrac{v\mathrm{d}v}{2v^2-v-1}=\cfrac{1}{3}\left(\displaystyle\int\cfrac{1}{v-1}\mathrm{d}v+\displaystyle\int\cfrac{1}{2v+1}\mathrm{d}v\right)\\ &=\cfrac{1}{3}\left[\ln|v-1|+\cfrac{1}{2}\ln|2v-1|\right]+C_1. \end{aligned} 21lnx=2v2v1vdv=31(v11dv+2v+11dv)=31[lnv1+21ln2v1]+C1.
  即 ( v − 1 ) 2 ( 2 v − 1 ) x 3 = C 2 ( C 2 = e − 6 C 1 ) (v-1)^2(2v-1)x^3=C_2(C_2=e^{-6C_1}) (v1)2(2v1)x3=C2(C2=e6C1)。代入 v = u x v=\cfrac{u}{x} v=xu,得
2 u 3 − 3 x ( x 2 + y ) + x 3 = C 2 . 2u^3-3x(x^2+y)+x^3=C_2. 2u33x(x2+y)+x3=C2.
  再代入 u = x 2 + y u=\sqrt{x^2+y} u=x2+y ,得原方程的通解
2 ( x 2 + y ) 3 2 − 3 x ( x 2 + y ) + x 3 = C 2 . 2(x^2+y)^{\frac{3}{2}}-3x(x^2+y)+x^3=C_2. 2(x2+y)233x(x2+y)+x3=C2.
  即 ( x 2 + y ) 3 2 = x 3 + 3 2 x y + C ( C = C 2 2 ) (x^2+y)^{\frac{3}{2}}=x^3+\cfrac{3}{2}xy+C\left(C=\cfrac{C_2}{2}\right) (x2+y)23=x3+23xy+C(C=2C2)。(这道题利用换元法解积分

5.求下列微分方程满足所给初值条件的特解:

(1) y 3 d x + 2 ( x 2 − x y 2 ) d y = 0 , x = 1 时 y = 1 ; y^3\mathrm{d}x+2(x^2-xy^2)\mathrm{d}y=0,x=1\text{时}y=1; y3dx+2(x2xy2)dy=0,x=1y=1;

  原方程可以表示成伯努利方程
d x d y − 2 y x = − 2 y 3 x 2 . \cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{2}{y}x=-\cfrac{2}{y^3}x^2. dydxy2x=y32x2.
  即
x − 2 d x d y − 2 y x − 1 = − 2 y 3 . x^{-2}\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{2}{y}x^{-1}=-\cfrac{2}{y^3}. x2dydxy2x1=y32.
  令 z = x − 1 z=x^{-1} z=x1,则 d z d y = − x − 2 d x d y \cfrac{\mathrm{d}z}{\mathrm{d}y}=-x^{-2}\cfrac{\mathrm{d}x}{\mathrm{d}y} dydz=x2dydx,且原方程化为一阶线性方程
d z d y d z d y + 2 y z = 2 y 3 . \cfrac{\mathrm{d}z}{\mathrm{d}y}\cfrac{\mathrm{d}z}{\mathrm{d}y}+\cfrac{2}{y}z=\cfrac{2}{y^3}. dydzdydz+y2z=y32.
  解得
z = e − ∫ 2 y d y ( ∫ 2 y 3 e ∫ 2 y d y d y + C ) = 1 y 2 ( ∫ 2 y d y + C ) = 1 y 2 ( 2 ln ⁡ ∣ y ∣ + C ) . \begin{aligned} z&=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int\cfrac{2}{y^3}e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(\displaystyle\int\cfrac{2}{y}\mathrm{d}y+C\right)\\ &=\cfrac{1}{y^2}\left(2\ln|y|+C\right). \end{aligned} z=ey2dy(y32ey2dydy+C)=y21(y2dy+C)=y21(2lny+C).
  将 z = x − 1 z=x^{-1} z=x1代入上式,得 x − 1 = 1 y 2 ( 2 ln ⁡ ∣ y ∣ + C ) x^{-1}=\cfrac{1}{y^2}\left(2\ln|y|+C\right) x1=y21(2lny+C),即原方程通解
y 2 = x ( 2 ln ⁡ ∣ y ∣ + C ) . y^2=x\left(2\ln|y|+C\right). y2=x(2lny+C).
  由初值条件 x = 1 x=1 x=1 y = 1 y=1 y=1,得 C = 1 C=1 C=1,故所求特解为
y 2 = x ( 2 ln ⁡ ∣ y ∣ + 1 ) . y^2=x\left(2\ln|y|+1\right). y2=x(2lny+1).
这道题主要利用了伯努利方程的解法求解

(3) 2 y ′ ′ − sin ⁡ 2 y = 0 , x = 0 时 y = π 2 , y ′ = 1 ; 2y''-\sin2y=0,x=0\text{时}y=\cfrac{\pi}{2},y'=1; 2ysin2y=0,x=0y=2π,y=1;

  在方程 2 y ′ ′ − sin ⁡ 2 y = 0 2y''-\sin2y=0 2ysin2y=0两端同乘以 y ′ y' y,则有
2 y ′ y ′ ′ − sin ⁡ 2 y y ′ = 0 2y'y''-\sin2yy'=0 2yysin2yy=0
  即
( y ′ 2 + 1 2 cos ⁡ 2 y ) ′ = 0. \left(y'^2+\cfrac{1}{2}\cos2y\right)'=0. (y2+21cos2y)=0.
  于是
y ′ 2 + 1 2 cos ⁡ 2 y = C 1 . y'^2+\cfrac{1}{2}\cos2y=C_1. y2+21cos2y=C1.
  代入初值条件 y = π 2 y=\cfrac{\pi}{2} y=2π y ′ = 1 y'=1 y=1,得 C 1 = 1 2 C_1=\cfrac{1}{2} C1=21。故有 y ′ 2 + 1 2 cos ⁡ 2 y = 1 2 y'^2+\cfrac{1}{2}\cos2y=\cfrac{1}{2} y2+21cos2y=21,即
y ′ 2 = 1 2 − 1 2 cos ⁡ 2 y = sin ⁡ 2 y . y'^2=\cfrac{1}{2}-\cfrac{1}{2}\cos2y=\sin^2y. y2=2121cos2y=sin2y.
  并因 y = π 2 y=\cfrac{\pi}{2} y=2π时,,故上式开方后取
y ′ = sin ⁡ y . y'=\sin y. y=siny.
  分离变量并积分
∫ d y sin ⁡ y = ∫ d x . \displaystyle\int\cfrac{\mathrm{d}y}{\sin y}=\displaystyle\int\mathrm{d}x. sinydy=dx.
  得
ln ⁡ tan ⁡ y 2 = x + C 2 . \ln\tan\cfrac{y}{2}=x+C_2. lntan2y=x+C2.
  代入初值条件 x = 0 x=0 x=0 y = π 2 y=\cfrac{\pi}{2} y=2π,得 C 2 = 0 C_2=0 C2=0,故所求特解为 ln ⁡ tan ⁡ y 2 = x \ln\tan\cfrac{y}{2}=x lntan2y=x,即
y = 2 arctan ⁡ e x . y=2\arctan e^x. y=2arctanex.
这道题主要利用了凑整的方法求解

12.求下列常系数线性微分方程组:

(1) { d x d t + 2 d y d t + y = 0 , 3 d x d t + 2 x + 4 d y d t + 3 y = t ; \begin{cases}\cfrac{\mathrm{d}x}{\mathrm{d}t}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\3\cfrac{\mathrm{d}x}{\mathrm{d}t}+2x+4\cfrac{\mathrm{d}y}{\mathrm{d}t}+3y=t;\end{cases} dtdx+2dtdy+y=0,3dtdx+2x+4dtdy+3y=t;

  记 D = d d t D=\cfrac{\mathrm{d}}{\mathrm{d}t} D=dtd,方程组可表示为
{ D x + ( 2 D + 1 ) y = 0 , ( 1 ) ( 3 D + 2 ) x + ( 4 D + 3 ) y = t . ( 2 ) \begin{cases} Dx+(2D+1)y=0,&(1)\\ (3D+2)x+(4D+3)y=t.& (2) \end{cases} {Dx+(2D+1)y=0,(3D+2)x+(4D+3)y=t.(1)(2)
  则有
∣ D 2 D + 1 3 D + 2 4 D + 3 ∣ x = ∣ 0 2 D + 1 t 4 D + 3 ∣ . \begin{vmatrix} D&2D+1\\ 3D+2&4D+3 \end{vmatrix}x= \begin{vmatrix} 0&2D+1\\ t&4D+3 \end{vmatrix}. D3D+22D+14D+3x=0t2D+14D+3.
  即
( 2 D 2 + 4 D + 2 ) x = − t − 2. (3) (2D^2+4D+2)x=-t-2.\tag{3} (2D2+4D+2)x=t2.(3)
  方程(3)对应齐次方程的特征方程为 2 r 2 + 4 r + 2 = 0 2r^2+4r+2=0 2r2+4r+2=0,有根 r 1 , 2 = − 1 r_{1,2}=-1 r1,2=1。因 f ( t ) = − t − 2 f(t)=-t-2 f(t)=t2,故令 x ∗ = A t + B x*=At+B x=At+B是(3)的特解,代入(3)中,即得 A = 1 2 A=\cfrac{1}{2} A=21 B = 0 B=0 B=0。故方程(3)有通解
x = ( C 1 + C 2 t ) e − t + 1 2 t . x=(C_1+C_2t)e^{-t}+\cfrac{1}{2}t. x=(C1+C2t)et+21t.
  又由 ( 2 ) − 2 ∗ ( 1 ) (2)-2*(1) (2)2(1)可得
y = − ( D + t ) x + t = − ( C 1 + C 2 + C 2 t ) e − t − 1 2 . \begin{aligned} y&=-(D+t)x+t\\ &=-(C_1+C_2+C_2t)e^{-t}-\cfrac{1}{2}. \end{aligned} y=(D+t)x+t=(C1+C2+C2t)et21.
  故方程组的通解为
{ x = ( C 1 + C 2 t ) e − t + 1 2 t , y = − ( C 1 + C 2 + C 2 t ) e − t − 1 2 . \begin{cases} x=(C_1+C_2t)e^{-t}+\cfrac{1}{2}t,\\ y=-(C_1+C_2+C_2t)e^{-t}-\cfrac{1}{2}. \end{cases} x=(C1+C2t)et+21t,y=(C1+C2+C2t)et21.
这道题主要利用了欧拉方程的解法求解

(2) { d 2 x d t 2 + 2 d x d t + x + d y d t + y = 0 , d x d t + x + d 2 y d t 2 + 2 d y d t + y = e t . \begin{cases}\cfrac{\mathrm{d}^2x}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=e^t.\end{cases} dt2d2x+2dtdx+x+dtdy+y=0,dtdx+x+dt2d2y+2dtdy+y=et.

  记 D = d d t D=\cfrac{\mathrm{d}}{\mathrm{d}t} D=dtd,方程组可表示为
{ ( D 2 + 2 D + 1 ) x + ( D + 1 ) y = 0 , ( D + 1 ) x + ( D 2 + 2 D + 1 ) y = e t . \begin{cases} (D^2+2D+1)x+(D+1)y=0,\\ (D+1)x+(D^2+2D+1)y=e^t. \end{cases} {(D2+2D+1)x+(D+1)y=0,(D+1)x+(D2+2D+1)y=et.
  即
{ ( D + 1 ) 2 x + ( D + 1 ) y = 0 , ( 1 ) ( D + 1 ) x + ( D + 1 ) 2 y = e t . ( 2 ) \begin{cases} (D+1)^2x+(D+1)y=0,&(1)\\ (D+1)x+(D+1)^2y=e^t.& (2) \end{cases} {(D+1)2x+(D+1)y=0,(D+1)x+(D+1)2y=et.(1)(2)
  则有
∣ ( D + 1 ) 2 D + 1 D + 1 ( D + 1 ) 2 ∣ x = ∣ 0 D + 1 e t ( D + 1 ) 2 ∣ . \begin{vmatrix} (D+1)^2&D+1\\ D+1&(D+1)^2 \end{vmatrix}x= \begin{vmatrix} 0&D+1\\ e^t&(D+1)^2 \end{vmatrix}. (D+1)2D+1D+1(D+1)2x=0etD+1(D+1)2.
  即
( D 3 + 3 D 2 + 2 D ) x = − e − t . (3) (D^3+3D^2+2D)x=-e^{-t}.\tag{3} (D3+3D2+2D)x=et.(3)
  方程(3)对应的齐次方程的特征方程为 r ( r 2 + 3 r + 2 = 0 ) r(r^2+3r+2=0) r(r2+3r+2=0),有根 r 1 = 0 r_1=0 r1=0 r 2 = − 1 r_2=-1 r2=1 r 3 = − 2 r_3=-2 r3=2。而 f ( t ) = − e t f(t)=-e^t f(t)=et λ = 1 \lambda=1 λ=1不是特征方程的根。故令 x ∗ = A e t x^*=Ae^t x=Aet是方程(3)的特解,代入(3)中并消去 e t e^t et,可得 A = − 1 6 A=-\cfrac{1}{6} A=61,即 x ∗ = − 1 6 e t x^*=-\cfrac{1}{6}e^t x=61et,于是方程(3)的通解为
x = C 1 + C 2 e − t + C 3 e − 2 t − 1 6 . x=C_1+C_2e^{-t}+C_3e^{-2t}-\cfrac{1}{6}. x=C1+C2et+C3e2t61.
  又由方程(1)得
( D + 1 ) y = − ( D + 1 ) 2 x = − D 2 x − 2 D − x = − C 1 − C 3 e − 2 t + 2 3 e t . \begin{aligned} (D+1)y&=-(D+1)^2x=-D^2x-2D-x\\ &=-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t. \end{aligned} (D+1)y=(D+1)2x=D2x2Dx=C1C3e2t+32et.
  即 y ′ + y = − C 1 − C 3 e − 2 t + 2 3 e t y'+y=-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t y+y=C1C3e2t+32et,可解得
y = e − ∫ d t [ ∫ ( − C 1 − C 3 e − 2 t + 2 3 e t ) e ∫ d t d t + C 4 ] = e − t [ ∫ ( − C 1 e − t − C 3 e − t + 2 3 e 2 t ) d t + C 4 ] = − C 1 + C 3 e − 2 t + 1 3 e t + C 4 e − t . \begin{aligned} y&=e^{-\int\mathrm{d}t}\left[\displaystyle\int\left(-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t\right)e^{\int\mathrm{d}t}\mathrm{d}t+C_4\right]\\ &=e^{-t}\left[\displaystyle\int\left(-C_1e^{-t}-C_3e^{-t}+\cfrac{2}{3}e^{2t}\right)\mathrm{d}t+C_4\right]\\ &=-C_1+C_3e^{-2t}+\cfrac{1}{3}e^t+C_4e^{-t}. \end{aligned} y=edt[(C1C3e2t+32et)edtdt+C4]=et[(C1etC3et+32e2t)dt+C4]=C1+C3e2t+31et+C4et.
  故方程组的通解为
{ x = C 1 + C 2 e − t + C 3 e − 2 t − 1 6 , y = − C 1 + C 3 e − 2 t + 1 3 e t + C 4 e − t . \begin{cases} x=C_1+C_2e^{-t}+C_3e^{-2t}-\cfrac{1}{6},\\ y=-C_1+C_3e^{-2t}+\cfrac{1}{3}e^t+C_4e^{-t}. \end{cases} x=C1+C2et+C3e2t61,y=C1+C3e2t+31et+C4et.
这道题主要利用了欧拉方程和行列式的解法

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,本文接自《第七章 微分方程(一)》,传送门在这里。

你可能感兴趣的:(考研数学一高等数学刷题错题记录,#)