【leetcode】#509 Fibonacci Number【Array,DP】【Easy】

509. Fibonacci Number

The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.

Given N, calculate F(N).

Example 1:

Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.

Example 2:

Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.

Example 3:

Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

题目大意

求斐波那契数列的值

方法一:递归法

解题思路:

最经典的递归思路,递归出口为N=0,N=1

AC代码:

int fib(int N) {
        if (N == 0) return 0;
        else if (N == 1) return 1;
        else return (fib(N - 1) + fib(N - 2));
    }

复杂度分析:

时间复杂度:O(2^n)

空间复杂度:O(n)

方法二:动态规划

解题思路:

递归法时间复杂度高的原因在于每次递归就要重新计算i

AC代码:

int data[35] = {0, 1};
    int fib(int N) {
        for(int i = 2; i <= N; i++) {
            data[i] = data[i - 1] + data[i - 2];
        }
        return data[N];
    }

复杂度分析:

时间复杂度:O(n)

空间复杂度:O(n)

方法三:命令式方法

解题思路:

动态规划尚存的问题是空间复杂度依然较高,该方法用三个变量代替DP开辟的数组

AC代码:

int a = 0, b = 1, c;
    int fib(int N) {
        if(N < 2) return N;
        for(int i = 1; i < N; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }

复杂度分析:

时间复杂度:O(n)

空间复杂度:O(1)

你可能感兴趣的:(C++,算法)