FJ
and his cows enjoy playing a mental game. They write down the numbers from 11 toN(1 \le N \le 10)N(1≤N≤10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4N=4) might go like this:
3 1 2 4
4 3 6
7 9
16
Behind FJ
's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number NN. Unfortunately, the game is a bit above FJ
's mental arithmetic capabilities.
Write a program to help FJ
play the game and keep up with the cows.
有这么一个游戏:
写出一个11至NN的排列a_iai,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少11,直到只剩下一个数字位置。下面是一个例子:
3,1,2,43,1,2,4
4,3,64,3,6
7,97,9
1616
最后得到1616这样一个数字。
现在想要倒着玩这样一个游戏,如果知道NN,知道最后得到的数字的大小sumsum,请你求出最初序列a_iai,为11至NN的一个排列。若答案有多种可能,则输出字典序最小的那一个。
[color=red]管理员注:本题描述有误,这里字典序指的是1,2,3,4,5,6,7,8,9,10,11,121,2,3,4,5,6,7,8,9,10,11,12
而不是1,10,11,12,2,3,4,5,6,7,8,91,10,11,12,2,3,4,5,6,7,8,9[/color]
输入格式:
两个正整数n,sumn,sum。
输出格式:
输出包括11行,为字典序最小的那个答案。
当无解的时候,请什么也不输出。(好奇葩啊)
输入样例#1: 复制
4 16
输出样例#1: 复制
3 1 2 4
对于40\%40%的数据,n≤7n≤7;
对于80\%80%的数据,n≤10n≤10;
对于100\%100%的数据,n≤12,sum≤12345n≤12,sum≤12345。
如果n为4,那么sum是a+3b+3c+d。
如果n为5,那么sum是a+4b+6c+4d+e。
如果n为6,那么sum是a+5b+10c+10d+5e+f。
可发现规律与杨辉三角有关
可以利用深搜找到所求的顺序
#include
using namespace std;
const int maxm = 15;
int f[maxm][maxm],a[maxm],n,sum;
bool vis[maxm];
void yanghui()
{
f[1][1] = 1;
for (int i=2;i<=n;i++)
{
f[i][1] = 1;
for (int j=2;j<=i+1;j++)
f[i][j] = f[i-1][j-1] + f[i-1][j];
}
}
bool dfs(int u,int res)
{
if (res>sum) return 0;
if (u>n)
{
if (res==sum) return 1;
else return 0;
}
for (int i=1;i<=n;i++)
{
if (!vis[i])
{
vis[i] = 1;
a[u] = i;
if (dfs(u+1,res+i*f[n][u]))
return 1;
vis[i] = 0;
}
}
return 0;
}
int main()
{
scanf("%d %d",&n,&sum);
yanghui();
if (dfs(1,0))
for (int i=1;i<=n;i++)
printf("%d ",a[i]);
return 0;
}