源码阅读 - ThreadPoolExecutor

0. ThreadPoolExecutor简介

  • ExecutorService的一种实现类,提供线程池的管理方法
    源码阅读 - ThreadPoolExecutor_第1张图片
    ThreadPoolExecutor类图.png

    ThreadPoolExecutor继承了AbstractExecutorService抽象类,主要提供了线程池生命周期的管理、任务提交的方法。
    提交任务:execute submit方法
    关闭线程池:shutdown shutdownNow方法

1. 主要属性介绍

ctl

AtomicInteger ctl线程池的状态及容量控制,低29位表示容量,高3位表示状态

private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

corePoolSize

核心线程数,当前运行线程数小于此数目时直接创建核心线程,大于此数目时会先将任务入队列,入队列失败才会再创建非核心线程,但保证总数目不大于maximumPoolSize,失败执行reject方法。

maximumPoolSize

线程池中最多线程数目。

keepAliveTime

线程存活时间,线程数目大于corePoolSize或者allowCoreThreadTimeOuttrue时,如有线程在此时间内没有执行任务则会结束线程。

allowCoreThreadTimeOut

是否允许核心线程到时间后结束线程。

workQueue

BlockingQueue对象,存放待执行任务。

2. 主要方法介绍

构造方法

构造方法有4个,但是最终都是调用最后一个,主要是设置一些属性

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

execute

向线程池提交任务

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     * 如果当前运行的线程数小于corePoolSize,尝试启动一个新线程
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     * 成功放入队列,重复检查是否需要创建一个新线程
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     * 不能入队,尝试添加一个新线程,如果失败,拒绝任务
     */
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        //添加一个核心线程
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    //达到corePoolSize,尝试放入等待队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        //二次检查,若线程池关闭,移除任务,拒绝任务
        if (! isRunning(recheck) && remove(command))
            reject(command);
        //若当前没有线程,添加一个非核心线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    //放入等待队列失败,尝试添加非核心线程
    else if (!addWorker(command, false))
        //添加非核心线程失败,拒绝任务
        reject(command);
}

addWorker

添加一个工作线程

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // Check if queue empty only if necessary.
        //检查队列是否为空
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;
        for (;;) {
            int wc = workerCountOf(c);
            //检查线程容量限制
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            //线程数+1
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        //新建一个worker
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    //将worker放入工作集中
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                //启动刚才的线程
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

runWorker

在创建worker对象时,线程参数是worker自身

this.thread = getThreadFactory().newThread(this);

所以启动worker线程时执行的是runWorker方法

/** Delegates main run loop to outer runWorker  */
public void run() {
    runWorker(this);
}

getTask方法负责从workQueue等待队列中取出待执行任务

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // Check if queue empty only if necessary.
        //getTask表示某个worker的当前任务完成,来取下一个任务,如果线程池已经关闭,则不继续执行,worker数目-1
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
        int wc = workerCountOf(c);
        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
        //数量超出限制或者超时,worker数目-1
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }
        try {
            //限时用poll,否则take阻塞
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            //r为null,超时了
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

runWorker方法执行上面取到的task

final void runWorker(Worker w) {
    //获取执行线程
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            //如果线程池STOP了,但是wt没中断,中断之
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    //执行task
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        //worker退出时执行,如果是异常中断,可能会新建一个worker来代替
        processWorkerExit(w, completedAbruptly);
    }
}

reject

任务提交失败时,拒绝任务

final void reject(Runnable command) {
    handler.rejectedExecution(command, this);
}

ThreadPoolExecutor提供了4中拒绝策略,分别是

  • CallerRunsPolicy在调用线程中执行
  • AbortPolicy丢弃任务,抛出RejectedExecutionException
  • DiscardPolicy仅丢弃任务
  • DiscardOldestPolicy丢弃队列中最早的任务,然后添加本任务

shutdown、shutdownNow

关闭线程池

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        //检查权限,确保调用者有关闭权限
        checkShutdownAccess();
        //将线程池状态设置为shutdown
        advanceRunState(SHUTDOWN);
        //中断空闲线程
        interruptIdleWorkers();
        //结束回调
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
}
public List shutdownNow() {
    List tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        //状态设置为stop
        advanceRunState(STOP);
        //中断所有线程
        interruptWorkers();
        //返回未执行的任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

3. 线程池的使用

通过JUC包内提供的工具类Executors来创建一个线程池

  1. 线程数固定的线程池
public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue());
}

public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue(),
                                  threadFactory);
}
  1. 单线程的线程池,顺序执行任务
    其中FinalizableDelegatedExecutorServiceExecutorService的另一个实现类,使用了代理模式,其行为全部代理给ThreadPoolExecutor对象。
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue()));
}

public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue(),
                                threadFactory));
}
  1. 缓存线程池
    没有核心线程,随用随建,60s内无任务则结束
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue());
}

public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue(),
                                  threadFactory);
}

4. 总结

  1. 通过JUC工具类Executors创建线程池
  2. 通过execute submit向线程池提交任务
    • 提交Callable任务时,submit会返回Future对象,可以通过此对象获取结果
    • submit也是通过execute方法来提交任务
  3. 提交任务时
    • 如果当前线程数小于核心线程数,会创建一个核心线程,即使当前有空闲线程
    • 如果大于核心线程数,任务会入队,入队失败的话,会创建一个非核心线程来处理,如果创建失败,则会拒绝任务
  4. 线程的结束
    • 非核心线程在keepAliveTime时间内未执行任务则会结束
    • 如果allowCoreThreadTimeOuttrue,核心线程在keepAliveTime时间内未执行任务也会结束
  5. 拒绝任务策略
    • CallerRunsPolicy在调用线程中执行
    • AbortPolicy丢弃任务,抛出RejectedExecutionException
    • DiscardPolicy仅丢弃任务
    • DiscardOldestPolicy丢弃队列中最早的任务,然后添加本任务
  6. 线程池的结束
    • shutdown关闭线程池,不再接受新任务,但是会执行完等待队列的任务
    • shutdownNow关闭线程池,执行完或中断当前运行线程,返回等待队列的任务列表

5. 参考

  1. ThreadPoolExecutor源码build 1.8.0_121-b13版本
  2. 并发编程3:线程池的使用与执行流程

你可能感兴趣的:(源码阅读 - ThreadPoolExecutor)