这种在运行时,动态地将代码切入到类的指定方法、指定位置上的编程思想就是面向切面的编程。
AOP是Spring提供的关键特性之一。AOP即面向切面编程,是OOP编程的有效补充。使用AOP技术,可以将一些系统性相关的编程工作,独立提取出来,独立实现,然后通过切面切入进系统。从而避免了在业务逻辑的代码中混入很多的系统相关的逻辑——比如权限管理,事物管理,日志记录等等。这些系统性的编程工作都可以独立编码实现,然后通过AOP技术切入进系统即可。从而达到了 将不同的关注点分离出来的效果。本文深入剖析Spring的AOP的原理。
1. AOP相关的概念
1) Aspect :切面,切入系统的一个切面。比如事务管理是一个切面,权限管理也是一个切面;
2) Join point :连接点,也就是可以进行横向切入的位置;
3) Advice :通知,切面在某个连接点执行的操作(分为: Before advice , After returning advice , After throwing advice , After (finally) advice , Around advice );
4) Pointcut :切点,符合切点表达式的连接点,也就是真正被切入的地方;
2. AOP 的实现原理
AOP分为静态AOP和动态AOP。静态AOP是指AspectJ实现的AOP,他是将切面代码直接编译到Java类文件中。动态AOP是指将切面代码进行动态织入实现的AOP。Spring的AOP为动态AOP,实现的技术为: JDK提供的动态代理技术 和 CGLIB(动态字节码增强技术) 。尽管实现技术不一样,但 都是基于代理模式 , 都是生成一个代理对象 。
主要使用到 InvocationHandler 接口和 Proxy.newProxyInstance() 方法。 JDK动态代理要求被代理实现一个接口,只有接口中的方法才能够被代理 。其方法是将被代理对象注入到一个中间对象,而中间对象实现InvocationHandler接口,在实现该接口时,可以在 被代理对象调用它的方法时,在调用的前后插入一些代码。而 Proxy.newProxyInstance() 能够利用中间对象来生产代理对象。插入的代码就是切面代码。所以使用JDK动态代理可以实现AOP。我们看个例子:
被代理对象实现的接口,只有接口中的方法才能够被代理:
public interface UserService {
public void addUser(User user);
public User getUser(int id);
}
被代理对象:
public class UserServiceImpl implements UserService {
public void addUser(User user) {
System.out.println("add user into database.");
}
public User getUser(int id) {
User user = new User();
user.setId(id);
System.out.println("getUser from database.");
return user;
}
}
代理中间类:
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
public class ProxyUtil implements InvocationHandler {
private Object target; // 被代理的对象
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
System.out.println("do sth before....");
Object result = method.invoke(target, args);
System.out.println("do sth after....");
return result;
}
ProxyUtil(Object target){
this.target = target;
}
public Object getTarget() {
return target;
}
public void setTarget(Object target) {
this.target = target;
}
}
测试:
import java.lang.reflect.Proxy;
import net.aazj.pojo.User;
public class ProxyTest {
public static void main(String[] args){
Object proxyedObject = new UserServiceImpl(); // 被代理的对象
ProxyUtil proxyUtils = new ProxyUtil(proxyedObject);
// 生成代理对象,对被代理对象的这些接口进行代理:UserServiceImpl.class.getInterfaces()
UserService proxyObject = (UserService) Proxy.newProxyInstance(Thread.currentThread().getContextClassLoader(),
UserServiceImpl.class.getInterfaces(), proxyUtils);
proxyObject.getUser(1);
proxyObject.addUser(new User());
}
}
执行结果:
do sth before....
getUser from database.
do sth after....
do sth before....
add user into database.
do sth after....
我们看到在 UserService接口中的方法 addUser 和 getUser方法的前面插入了我们自己的代码。这就是JDK动态代理实现AOP的原理。
我们看到该方式有一个要求, 被代理的对象必须实现接口,而且只有接口中的方法才能被代理 。
2)CGLIB (code generate libary)
字节码生成技术实现AOP,其实就是继承被代理对象,然后Override需要被代理的方法,在覆盖该方法时,自然是可以插入我们自己的代码的。因为需要Override被代理对象的方法,所以自然CGLIB技术实现AOP时,就 必须要求需要被代理的方法不能是final方法,因为final方法不能被子类覆盖 。我们使用CGLIB实现上面的例子:
package net.aazj.aop;
import java.lang.reflect.Method;
import net.sf.cglib.proxy.Enhancer;
import net.sf.cglib.proxy.MethodInterceptor;
import net.sf.cglib.proxy.MethodProxy;
public class CGProxy implements MethodInterceptor{
private Object target; // 被代理对象
public CGProxy(Object target){
this.target = target;
}
public Object intercept(Object arg0, Method arg1, Object[] arg2, MethodProxy proxy) throws Throwable {
System.out.println("do sth before....");
Object result = proxy.invokeSuper(arg0, arg2);
System.out.println("do sth after....");
return result;
}
public Object getProxyObject() {
Enhancer enhancer = new Enhancer();
enhancer.setSuperclass(this.target.getClass()); // 设置父类
// 设置回调
enhancer.setCallback(this); // 在调用父类方法时,回调 this.intercept()
// 创建代理对象
return enhancer.create();
}
}
public class CGProxyTest {
public static void main(String[] args){
Object proxyedObject = new UserServiceImpl(); // 被代理的对象
CGProxy cgProxy = new CGProxy(proxyedObject);
UserService proxyObject = (UserService) cgProxy.getProxyObject();
proxyObject.getUser(1);
proxyObject.addUser(new User());
}
}
输出结果:
do sth before....
getUser from database.
do sth after....
do sth before....
add user into database.
do sth after....
我们看到达到了同样的效果。它的原理是生成一个父类 enhancer.setSuperclass( this.target.getClass()) 的子类 enhancer.create() ,然后对父类的方法进行拦截enhancer.setCallback( this) . 对父类的方法进行覆盖,所以父类方法不能是final的。
3) 接下来我们看下spring实现AOP的相关源码:
@SuppressWarnings("serial")
public class DefaultAopProxyFactory implements AopProxyFactory, Serializable {
@Override
public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {
if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {
Class> targetClass = config.getTargetClass();
if (targetClass == null) {
throw new AopConfigException("TargetSource cannot determine target class: " +
"Either an interface or a target is required for proxy creation.");
}
if (targetClass.isInterface()) {
return new JdkDynamicAopProxy(config);
}
return new ObjenesisCglibAopProxy(config);
}
else {
return new JdkDynamicAopProxy(config);
}
}
从上面的源码我们可以看到:
if (targetClass.isInterface()) {
return new JdkDynamicAopProxy(config);
}
return new ObjenesisCglibAopProxy(config);
如果被代理对象实现了接口,那么就使用JDK的动态代理技术,反之则使用CGLIB来实现AOP,所以 Spring默认是使用JDK的动态代理技术实现AOP的 。
JdkDynamicAopProxy的实现其实很简单:
final class JdkDynamicAopProxy implements AopProxy, InvocationHandler, Serializable {
@Override
public Object getProxy(ClassLoader classLoader) {
if (logger.isDebugEnabled()) {
logger.debug("Creating JDK dynamic proxy: target source is " + this.advised.getTargetSource());
}
Class>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised);
findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);
return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
}
3. Spring AOP的配置
Spring中AOP的配置一般有两种方法,一种是使用
1) 基于
下面是一个典型的事务AOP的配置:
<tx:advice id="transactionAdvice" transaction-manager="transactionManager"?>
<tx:attributes >
<tx:method name="add*" propagation="REQUIRED" />
<tx:method name="append*" propagation="REQUIRED" />
<tx:method name="insert*" propagation="REQUIRED" />
<tx:method name="save*" propagation="REQUIRED" />
<tx:method name="update*" propagation="REQUIRED" />
<tx:method name="get*" propagation="SUPPORTS" />
<tx:method name="find*" propagation="SUPPORTS" />
<tx:method name="load*" propagation="SUPPORTS" />
<tx:method name="search*" propagation="SUPPORTS" />
<tx:method name="*" propagation="SUPPORTS" />
tx:attributes>
tx:advice>
<aop:config>
<aop:pointcut id="transactionPointcut" expression="execution(* net.aazj.service..*Impl.*(..))" />
<aop:advisor pointcut-ref="transactionPointcut" advice-ref="transactionAdvice" />
aop:config>
再看一个例子:
<bean id="aspectBean" class="net.aazj.aop.DataSourceInterceptor"/>
<aop:config>
<aop:aspect id="dataSourceAspect" ref="aspectBean">
<aop:pointcut id="dataSourcePoint" expression="execution(public * net.aazj.service..*.getUser(..))" />
<aop:pointcut expression="" id=""/>
<aop:before method="before" pointcut-ref="dataSourcePoint"/>
<aop:after method=""/>
<aop:around method=""/>
aop:aspect>
<aop:aspect>aop:aspect>
aop:config>
public class DataSourceInterceptor {
public void before(JoinPoint jp) {
DataSourceTypeManager.set(DataSources.SLAVE);
}
}
2) 基于注解和@Aspect风格的AOP配置
我们以事务配置为例:首先我们启用基于注解的事务配置
<tx:annotation-driven transaction-manager="transactionManager" />
然后扫描Service包:
<context:component-scan base-package="net.aazj.service,net.aazj.aop" />
最后在service上进行注解:
@Service("userService")
@Transactional
public class UserServiceImpl implements UserService{
@Autowired
private UserMapper userMapper;
@Transactional (readOnly=true)
public User getUser(int userId) {
System.out.println("in UserServiceImpl getUser");
System.out.println(DataSourceTypeManager.get());
return userMapper.getUser(userId);
}
public void addUser(String username){
userMapper.addUser(username);
// int i = 1/0; // 测试事物的回滚
}
public void deleteUser(int id){
userMapper.deleteByPrimaryKey(id);
// int i = 1/0; // 测试事物的回滚
}
@Transactional (rollbackFor = BaseBusinessException.class)
public void addAndDeleteUser(String username, int id) throws BaseBusinessException{
userMapper.addUser(username);
this.m1();
userMapper.deleteByPrimaryKey(id);
}
private void m1() throws BaseBusinessException {
throw new BaseBusinessException("xxx");
}
public int insertUser(User user) {
return this.userMapper.insert(user);
}
}
搞定。这种事务配置方式,不需要我们书写pointcut表达式,而是我们在需要事务的类上进行注解。但是如果我们自己来写切面的代码时,还是要写pointcut表达式。下面看一个例子(自己写切面逻辑):
首先去扫描 @Aspect 注解定义的 切面:
<context:component-scan base-package="net.aazj.aop" />
切面代码:
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;
@Aspect // for aop
@Component // for auto scan
@Order(0) // execute before @Transactional
public class DataSourceInterceptor {
@Pointcut("execution(public * net.aazj.service..*.get*(..))")
public void dataSourceSlave(){};
@Before("dataSourceSlave()")
public void before(JoinPoint jp) {
DataSourceTypeManager.set(DataSources.SLAVE);
}
}
我们使用到了 @Aspect 来定义一个切面;@Component是配合
/**
* Annotation that defines ordering. The value is optional, and represents order value
* as defined in the {@link Ordered} interface. Lower values have higher priority.
* The default value is {@code Ordered.LOWEST_PRECEDENCE}, indicating
* lowest priority (losing to any other specified order value).
*/
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD})
public @interface Order {
/**
* The order value. Default is {@link Ordered#LOWEST_PRECEDENCE}.
* @see Ordered#getOrder()
*/
int value() default Ordered.LOWEST_PRECEDENCE;
}
关于数据源的切换可以参加专门的博文:http://www.cnblogs.com/digdeep/p/4512368.html
3) 切点表达式(pointcut)
上面我们看到,无论是
1>pointcut语法形式(execution):
execution(modifiers-pattern? ret-type-pattern declaring-type-pattern? name-pattern(param-pattern)throws-pattern?)
带有 ? 号的部分是可选的,所以可以简化成: ret-type-pattern name-pattern(param_pattern) 返回类型,方法名称,参数三部分来匹配 。
配置起来其实也很简单: * 表示任意返回类型,任意方法名,任意一个参数类型; .. 连续两个点表示0个或多个包路径,还有0个或多个参数 。就是这么简单。看下例子:
execution(* net.aazj.service..*.get*(..)) :表示net.aazj.service包或者子包下的以get开头的方法,参数可以是0个或者多个(参数不限);
execution(* net.aazj.service.AccountService.*(..)): 表示AccountService接口下的任何方法,参数不限;
注意这里,将类名和包路径是一起来处理的,并没有进行区分,因为类名也是包路径的一部分。
参数param- pattern 部分比较复杂: () 表示没有参数,(..)参数不限,(*,String) 第一个参数不限类型,第二参数为String .
2>within() 语法:
within()只能指定(限定)包路径(类名也可以看做是包路径),表示某个包下或者子报下的所有方法:
within(net.aazj.service.*), within(net.aazj.service..*),within(net.aazj.service.UserServiceImpl.*)
3>this() 与 target():
this是指代理对象,target是指被代理对象(目标对象)。所以 this() 和 target() 分别限定 代理对象的类型和被代理对象的类型:
this(net.aazj.service.UserService): 实现了UserService的代理对象(中的所有方法);
target (net.aazj.service.UserService): 被代理对象 实现了UserService(中的所有方法);
4> args():
限定方法的参数的类型:
args(net.aazj.pojo.User): 参数为User类型的方法。
5>@target(), @within(), @annotation(), @args():
这些语法形式都是针对注解的 ,比如 带有某个注解的 类 , 带有某个注解的 方法, 参数的类型 带有某个注解 :
@within(org.springframework.transaction.annotation.Transactional)
@target(org.springframework.transaction.annotation.Transactional)
两者都是指被代理对象 类 上有 @Transactional 注解的(类的所有方法),(两者似乎没有区别???)
@annotation(org.springframework.transaction.annotation.Transactional): 方法 带有 @Transactional 注解的所有方法
@args(org.springframework.transaction.annotation.Transactional): 参数的类型 带有 @Transactional 注解 的所有方法
6>bean(): 指定某个bean的名称
bean(userService): bean的id为 "userService" 的所有方法;
bean(*Service): bean的id为 "Service"字符串结尾的所有方法;
另外注意上面这些表达式是可以利用 ||, &&, ! 进行自由组合的。比如:execution(public * net.aazj.service..*.getUser(..)) && args(Integer,..)
4. 向注解处理方法传递参数
有时我们在写注解处理方法时,需要访问被拦截的方法的参数。此时我们可以使用 args() 来传递参数,下面看一个例子:
@Aspect
@Component // for auto scan
//@Order(2)
public class LogInterceptor {
@Pointcut("execution(public * net.aazj.service..*.getUser(..))")
public void myMethod(){};
@Before("myMethod()")
public void before() {
System.out.println("method start");
}
@After("myMethod()")
public void after() {
System.out.println("method after");
}
@AfterReturning("execution(public * net.aazj.mapper..*.*(..))")
public void AfterReturning() {
System.out.println("method AfterReturning");
}
@AfterThrowing("execution(public * net.aazj.mapper..*.*(..))")
// @Around("execution(public * net.aazj.mapper..*.*(..))")
public void AfterThrowing() {
System.out.println("method AfterThrowing");
}
@Around("execution(public * net.aazj.mapper..*.*(..))")
public Object Around(ProceedingJoinPoint jp) throws Throwable {
System.out.println("method Around");
SourceLocation sl = jp.getSourceLocation();
Object ret = jp.proceed();
System.out.println(jp.getTarget());
return ret;
}
@Before("execution(public * net.aazj.service..*.getUser(..)) && args(userId,..)")
public void before3(int userId) {
System.out.println("userId-----" + userId);
}
@Before("myMethod()")
public void before2(JoinPoint jp) {
Object[] args = jp.getArgs();
System.out.println("userId11111: " + (Integer)args[0]);
System.out.println(jp.getTarget());
System.out.println(jp.getThis());
System.out.println(jp.getSignature());
System.out.println("method start");
}
}
方法:
@Before("execution(public * net.aazj.service..*.getUser(..)) && args(userId,..)")
public void before3(int userId) {
System.out.println("userId-----" + userId);
}
它会拦截 net.aazj.service 包下或者子包下的getUser方法,并且该方法的第一个参数必须是int型的, 那么使用切点表达式args(userId,..) 就可以使我们在切面中的处理方法before3中可以访问这个参数。
before2方法也让我们知道也可以通过 JoinPoint 参数来获得被拦截方法的参数数组。 JoinPoint 是每一个切面处理方法都具有的参数, @Around 类型的具有的参数类型为ProceedingJoinPoint。通过 JoinPoint或者 ProceedingJoinPoint 参数可以访问到被拦截对象的一些信息(参见上面的 before2 方法)。