泊松流到达间隔服从负指数分布。
为了研究排队系统运行的效率,估计其服务质量,确定系统的优参数,评价系统 的结构是否合理并研究其改进的措施,必须确定用以判断系统运行优劣的基本数量指标,这些数量指标通常是:
模型的条件是:
clear
clc
%*****************************************
%初始化顾客源
%*****************************************
%总仿真时间
Total_time = 10;
%队列最大长度
N = 10000000000;
%到达率与服务率
lambda = 10;
mu = 6;
%平均到达时间与平均服务时间
arr_mean = 1/lambda;
ser_mean = 1/mu;
arr_num = round(Total_time*lambda*2);
events = [];
%按负指数分布产生各顾客达到时间间隔
events(1,:) = exprnd(arr_mean,1,arr_num);
%各顾客的到达时刻等于时间间隔的累积和
events(1,:) = cumsum(events(1,:));
%按负指数分布产生各顾客服务时间
events(2,:) = exprnd(ser_mean,1,arr_num);
%计算仿真顾客个数,即到达时刻在仿真时间内的顾客数
len_sim = sum(events(1,:)<= Total_time);
%*****************************************
%计算第 1个顾客的信息
%*****************************************
%第 1个顾客进入系统后直接接受服务,无需等待
events(3,1) = 0;
%其离开时刻等于其到达时刻与服务时间之和
events(4,1) = events(1,1)+events(2,1);
%其肯定被系统接纳,此时系统内共有
%1个顾客,故标志位置1
events(5,1) = 1;
%其进入系统后,系统内已有成员序号为 1
member = [1];
for i = 2:arr_num
%如果第 i个顾客的到达时间超过了仿真时间,则跳出循环
if events(1,i)>Total_time
break;
else
number = sum(events(4,member) > events(1,i));
%如果系统已满,则系统拒绝第 i个顾客,其标志位置 0
if number >= N+1
events(5,i) = 0;
%如果系统为空,则第 i个顾客直接接受服务
else
if number == 0
%其等待时间为 0
events(3,i) = 0;
%其离开时刻等于到达时刻与服务时间之和
events(4,i) = events(1,i)+events(2,i);
%其标志位置 1
events(5,i) = 1;
member = [member,i];
%如果系统有顾客正在接受服务,且系统等待队列未满,则 第 i个顾客进入系统
else len_mem = length(member);
%其等待时间等于队列中前一个顾客的离开时刻减去其到 达时刻
events(3,i)=events(4,member(len_mem))-events(1,i);
%其离开时刻等于队列中前一个顾客的离开时刻加上其服
%务时间
events(4,i)=events(4,member(len_mem))+events(2,i);
%标识位表示其进入系统后,系统内共有的顾客数
events(5,i) = number+1;
member = [member,i];
end
end
end
end
%仿真结束时,进入系统的总顾客数
len_mem = length(member);
%*****************************************
%输出结果
%*****************************************
%绘制在仿真时间内,进入系统的所有顾客的到达时刻和离开时刻曲线图(stairs:绘制二维阶梯图)
stairs([0 events(1,member)],0:len_mem);
hold on;
stairs([0 events(4,member)],0:len_mem,'.-r');
legend('到达时间 ','离开时间 ');
hold off;
grid on;
%绘制在仿真时间内,进入系统的所有顾客的停留时间和等
%待时间曲线图(plot:绘制二维线性图)
figure;
plot(1:len_mem,events(3,member),'r-*',1: len_mem,events(2,member)+events(3,member),'k-');
legend('等待时间 ','停留时间 ');
grid on;
此模型与M/M/1模型不同之处在于有S个服务台,各服务台的工作相互独立,服务率相等,如果顾客到达时,S个服务台都忙着,则排成一队等待,先到先服务的单队模型。
% 多服务台模型
% 设顾客单个到达,相继到达时间间隔服从参数为λ 的负指数分布
% 每个服务台的服务时间相互独立,且服从参数为 μ 的负指数分布
s=2; % 服务台数目
mu=4;
lambda=3;
ro=lambda/mu;
ros=ro/s;
sum1=0;
for i=0:(s-1)
sum1=sum1+ro.^i/factorial(i);
end
sum2=ro.^s/factorial(s)/(1-ros);
p0=1/(sum1+sum2);
p=ro.^s.*p0/factorial(s)/(1-ros);
Lq=p.*ros/(1-ros);
L=Lq+ro;
W=L/lambda;
Wq=Lq/lambda;
fprintf('排队等待的平均人数为%5.2f人\n',Lq)
fprintf('系统内的平均人数为%5.2f人\n',L)
fprintf('平均逗留时间为%5.2f分钟\n',W*60)
fprintf('平均等待时间为%5.2f分种\n',Wq*60)