1754. 骑士精神

描述 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士,
且有一个空位。在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵坐标相差为1的格子)移动到空位上。
给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘: 为了体现出骑士精神,他们必须以最少的步数完成任务,若果步数大于15,返回-1。
目标棋盘是 “11111” “01111” “00*11” “00001” “00000”

解法:

  1. 问题等价于从最终状态经过15步是否能达到起始状态。
  2. 状态用数字表示。
  3. BFS搜索
  4. 在最后步数过高的情况下,能到达的状态是指数级增加的。但是,如果状态和起始状态相差位数比剩余步数大太多就可以排除。
class Solution:
    """
    @param a: the Initial state
    @return: the fewest steps to complete the task
    """
    def getSteps(self, a):
        # Write your code here

        Goal = [
            [1,1,1,1,1],
            [0,1,1,1,1],
            [0,0,2,1,1],
            [0,0,0,0,1],
            [0,0,0,0,0]
            ]
        x, y = -1, -1
        P = [1] * 25
        for i in range(1, 25): P[i] = 10 * P[i-1]
        A = [[0] * 5 for _ in range(5)]
        for i in range(5):
            for j in range(5):
                if a[i][j] == '*':
                    A[i][j] = 2
                    x, y = i, j
                if a[i][j] == '1':
                    A[i][j] = 1
                if a[i][j] == '0':
                    A[i][j] = 0
        
        def trans(A):
            ret = 0
            for i in range(5):
                for j in range(5):
                    ret += P[i*5+j] * A[i][j]
            return ret

        def swap(Q, rem):
            nQ = []
            for state,x, y in Q:
                for dx, dy in [[1,2],[1,-2], [-1,2],[-1, -2], [2, 1], [2,-1], [-2, 1],[-2, -1]]:
                    nx, ny = x + dx, y + dy
                    if 0 <= nx < 5 and 0 <= ny < 5:
                        digit = state // P[5*nx+ny] % 10
                        nstate = state - 2 * P[5*x + y] + 2 * P[5*nx + ny] + digit * P[5*x + y] - digit * P[5*nx + ny]
                        if nstate not in vis and diff_bit(target, nstate) - 1 <= rem:
                            vis.add(nstate)
                            nQ.append((nstate,nx, ny))
            return nQ
        def diff_bit(s1, s2): 
            ret = 0
            for _ in range(25):
                if s1 % 10 != s2 % 10:
                    ret += 1
                s1 //= 10
                s2 //= 10
            return ret 

        target = trans(Goal)
        if target == trans(A): 
            return 0
        vis = {trans(A)}
        Q = [(trans(A), x, y)]
        for i in range(1, 16):
            nQ = swap(Q, 15 - i)
            vis |= set(nQ)
            if target in vis:
                return i
            Q = nQ
    
        return -1

if __name__ == "__main__":
    G = ["10110","01*11","10111","01001","00000"]
    print(Solution().getSteps(G))

你可能感兴趣的:(python3,Lintcode,CAT)