基因ID转换及富集分析 | org.Hs.eg.db clusterProfiler

仅针对人类而言。
虽然一直对GO和KEGG不感冒,但流程化的分析还是要做的。主要包括两部分:

  • 将基因编号转为ENTREZID(具有唯一性):基因编号来自ANNOVAR的注释结果,建议别用SYMBOL,因为这种名称特异性较差,在转成ENTREZID时可能出现不唯一的现象。symbol与entrezID并不是绝对的一一对应的
  • 利用ClusterProfiler进行富集分析:Y叔更新快,不用担心数据库过时,操作方便,出图好看易调节。
    各类数据库的ID,非常多,常见(用)的基本都包含在library(org.Hs.eg.db)中了。
    ![这么多种ID][1]

01 基因编号转换

人类的数据可以利用library(org.Hs.eg.db)来进行转换。另外,org.db上有20个物种的数据库可供使用
http://bioconductor.org/packages/release/BiocViews.html#___OrgDb
***强烈建议看下官方文档,针对数据库的使用有非常详细的介绍,好用~

将ENSEMBL编号转换为ENTREZID

输入文件example_ensGene:ENSEMBL的列表

source("http://bioconductor.org/biocLite.R")
biocLite(org.Hs.eg.db) #此为人类基因编号系统;mouse为org.Mm.eg.db

library(org.Hs.eg.db)
keytypes(org.Hs.eg.db) #查看基因编号系统名称

EG2Ensembl=toTable(org.Hs.egENSEMBL) #将ENTREZID和ENSEMBL对应的数据存入该变量
#gene_id      ensembl_id
#1            ENSG00000121410

ens=read.table("example_ensGene")
#ENSG00000092621
ens=ens$V1
geneLists=data.frame(ensembl_id=ens)
results=merge(geneLists,EG2Ensembl,by='ensembl_id',all.x=T)
id=na.omit(results$gene_id)  #提取出非NA的ENTREZID
gene=id
#[1] "728642" "728642" "728642" "728642" "5725"   "23357" 

将SYMBOL转为ENTREZID

自定义函数,然后批量转换,来自生信技能树中JIMMY的贴子,亲测可用。

geneIDannotation <- function(geneLists=c(1,2,9),name=T,map=T,ensemble=F,accnum=F){
  ## input ID type : So far I just accept entrezID or symbol
  ## default, we will annotate the entrezID and symbol, chromosone location and gene name
  
  suppressMessages(library("org.Hs.eg.db"))
  all_EG=mappedkeys(org.Hs.egSYMBOL)
  EG2Symbol=toTable(org.Hs.egSYMBOL)
  if( all(! geneLists %in% all_EG) ){
    inputType='symbol'
    geneLists=data.frame(symbol=geneLists)
    results=merge(geneLists,EG2Symbol,by='symbol',all.x=T)
  }else{
    inputType='entrezID'
    geneLists=data.frame(gene_id=geneLists)
    results=merge(geneLists,EG2Symbol,by='gene_id',all.x=T)
  }
  
  if ( name ){
    EG2name=toTable(org.Hs.egGENENAME)
    results=merge(results,EG2name,by='gene_id',all.x=T)
  }
  if(map){
    EG2MAP=toTable(org.Hs.egMAP)
    results=merge(results,EG2MAP,by='gene_id',all.x=T)
  }
  if(ensemble){
    EG2ENSEMBL=toTable(org.Hs.egENSEMBL)
    results=merge(results,EG2ENSEMBL,by='gene_id',all.x=T)
  }
  if(accnum){
    EG2accnum=toTable(org.Hs.egREFSEQ)
    results=merge(results,EG2MAP,by='gene_id',all.x=T)
  }
  return(results)
}
geneIDannotation()
geneIDannotation(c('TP53','BRCA1','KRAS','PTEN'))

一个超级方便快捷的ID转换方法

利用ClusterProfiler中的bitr

require(ClusterProfiler)
x <- c("GPX3",  "GLRX",   "LBP",   "CRYAB", "DEFB1", "HCLS1",   "SOD2",   "HSPA2",
       "ORM1",  "IGFBP1", "PTHLH", "GPC3",  "IGFBP3","TOB1",    "MITF",   "NDRG1",
       "NR1H4", "FGFR3",  "PVR",   "IL6",   "PTPRM", "ERBB2",   "NID2",   "LAMB1",
       "COMP",  "PLS3",   "MCAM",  "SPP1",  "LAMC1", "COL4A2",  "COL4A1", "MYOC",
       "ANXA4", "TFPI2",  "CST6",  "SLPI",  "TIMP2", "CPM",     "GGT1",   "NNMT",
       "MAL",   "EEF1A2", "HGD",   "TCN2",  "CDA",   "PCCA",    "CRYM",   "PDXK",
       "STC1",  "WARS",  "HMOX1", "FXYD2", "RBP4",   "SLC6A12", "KDELR3", "ITM2B")
eg = bitr(x, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
head(eg)

02 GO富集分析

over-representation test:enrichGO()

library(clusterProfiler)
ALL <- enrichGO(gene, "org.Hs.eg.db", keyType = "ENTREZID",ont = 'ALL',pvalueCutoff  = 0.05,pAdjustMethod = "BH",  qvalueCutoff  = 0.1, readable=T)  #一步到位
BP<-enrichGO(gene, "org.Hs.eg.db", keyType = "ENTREZID",ont = "BP",pvalueCutoff  = 0.05,pAdjustMethod = "BH",qvalueCutoff  = 0.1, readable=T) #3种分开进行富集
MF <- enrichGO(gene, "org.Hs.eg.db", keyType = "ENTREZID",ont = "MF",pvalueCutoff  = 0.05,pAdjustMethod = "BH",qvalueCutoff  = 0.1, readable=T)
CC <- enrichGO(gene, "org.Hs.eg.db", keyType = "ENTREZID",ont = "CC",pvalueCutoff  = 0.05,pAdjustMethod = "BH",qvalueCutoff  = 0.1, readable=T)
#gene: a vector of entrez gene id
#"org.Hs.eg.db":OrgDb
#keyType:keytype of input gene
#ont: One of "MF", "BP", and "CC" subontologies.
#pvalueCutoff:Cutoff value of pvalue.
#pAdjustMethod: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
#universe: background genes
#qvalueCutoff: qvalue cutoff
#minGSSize: minimal size of genes annotated by Ontology term for testing.
#maxGSSize: maximal size of genes annotated for testing
#readable: whether mapping gene ID to gene Name(Symbol)
#pool: If ont=’ALL’, whether pool 3 GO sub-ontologies

write.table(as.data.frame(ALL@result), file="GOALL.txt",quote=FALSE)

#可以对富集结果进行去冗余,方便查看关键信息;无法针对ALL进行去冗余(我也不晓得为啥)
CC_simp <- simplify(CC, cutoff=0.7,by="p.adjust",select_fun=min) 
BP_simp <- simplify(BP, cutoff=0.7,by="p.adjust",select_fun=min) 
MF_simp <- simplify(MF, cutoff=0.7,by="p.adjust",select_fun=min) 

write.table(as.data.frame(CC_simp@result), file="GO_simp.txt")
write.table(as.data.frame(BP_simp@result), file="GO_simp.txt",append=T,col.names=F)
write.table(as.data.frame(MF_simp@result), file="GO_simp.txt",append=T,col.names=F)

做出好看的泡泡图

p=dotplot(ALL,x="count",
        showCategory = 14,colorBy="pvalue") #showCategory即展示几个分类,最好都展示(取ALL@result的行数)

library(ggplot2)        
library(Cairo)
CairoPDF("enrichGO.pdf",width=10,height=8) #PDF格式非常棒,可在PS中调整dpi
p=dotplot(ALL,showCategory = 14, 
        colorBy="pvalue",
        font.size=18)  
p + scale_size(range=c(2, 8))  #设置点的大小
#showCategory即展示几个分类,最好都展示(取ALL@result的行数)
#font.size设置文字大小
dev.off()

![enrichGO.png-182.3kB][2]

#条形图
barplot(ALL, showCategory=15,title="EnrichmentGO_ALL")#条状图,按p从小到大排的

(这个图...好丑)
![Rplot.jpeg-143kB][3]

03 KEGG富集

kk <- enrichKEGG(gene = gene, 
                 organism ='hsa',
                 pvalueCutoff = 0.05,
                 qvalueCutoff = 0.1,
                 minGSSize = 1,
                 #readable = TRUE ,
                 use_internal_data =FALSE)
write.table(as.data.frame(kk@result), file="test_kk.txt")
p=dotplot(kk,showCategory = 14,colorBy="pvalue",font.size=18)  

效果同上图

04 Reactome pathway enrichment analysis

#install
source("https://bioconductor.org/biocLite.R")
biocLite("ReactomePA")
require(org.Mm.eg.db)
keytypes(org.Mm.eg.db)
EG2Ensembl=toTable(org.Mm.egENSEMBL)

#convert gene ID
query=read.table("geneList.txt")
#ENSMUSG00000043572
#ENSMUSG00000040035
#ENSMUSG00000019564
#ENSMUSG00000042446

query=query$V1
geneLists=data.frame(ensembl_id=query)
results=merge(geneLists,EG2Ensembl,by='ensembl_id',all.x=T)
id=na.omit(results$gene_id)  #提取出非NA的ENTREZID
gene=id

#Pathway enrichment analysis
require(ReactomePA)
x <- enrichPathway(gene=gene,pvalueCutoff=0.05, readable=T,organism = "mouse")
head(as.data.frame(x))
#                         ID                      Description GeneRatio  BgRatio       pvalue     p.adjust       qvalue
#R-MMU-422475   R-MMU-422475                    Axon guidance     12/74 278/9315 1.658138e-06 0.0005073902 0.0004415883
#R-MMU-163685   R-MMU-163685 Integration of energy metabolism      7/74  90/9315 6.607488e-06 0.0010109457 0.0008798392

write.table(x,file="ReactomePA.xls",quote=F,sep="\t")

#visulization
barplot(x,showCategory=24)
dotplot(x,showCategory=24)
emapplot(x)  #enrichment map
cnetplot(x, categorySize="pvalue", foldChange=gene)  #cnetplot(x, categorySize="pvalue", foldChange=geneList)
基因ID转换及富集分析 | org.Hs.eg.db clusterProfiler_第1张图片
ReactomePA_map.png

Note: 这两个包也可以用来做GSEA
[1]: http://static.zybuluo.com/fatlady/panpe77ea0yw9iqmgt0vt768/image_1casoc2uevrp6gr1f5b88mrqr9.png
[2]: http://static.zybuluo.com/fatlady/lmu9a8kk8bm1bm3psomi4hpu/rare_enrichGO.png
[3]: http://static.zybuluo.com/fatlady/x4btt326zwh3ay0tcj4bk5y3/Rplot.jpeg

你可能感兴趣的:(基因ID转换及富集分析 | org.Hs.eg.db clusterProfiler)