Python处理图像—将笛卡尔坐标系转换为极坐标系

Python处理图像—将笛卡尔坐标系转换为极坐标系

Python处理图像—将笛卡尔坐标系转换为极坐标系_第1张图片

首先讲一下思路:

根据想要输出的目标图像划分好矩阵再去用插值算法寻找原图的像素值Python处理图像—将笛卡尔坐标系转换为极坐标系_第2张图片

import matplotlib.pyplot as plt
import numpy as np
from skimage import io,color,morphology,transform
import math

img = io.imread('uu.png',as_gray=True)#矩阵形式
M ,N = img.shape
index = M if M<N else N
R_r = int(input("请输入大于{}的数字>>>".format(index)))
R_t = int(input("请输入大于360的数字>>>"))
x_0 = np.int_(np.floor(M/2))
y_0 = np.int_(np.floor(N/2))
d_t = 360/R_t #划分圆周
d_r = index/R_r #划分半径

class Conversion:
    PI = np.pi
    dst = np.zeros((R_r, R_t), dtype=float)
    def __init__(self,R_r=R_r ,R_t = R_t,x_0 = x_0,y_0 = y_0,d_t = d_t,d_r = d_r,img=img):
        self.img = img
        self.R_r = R_r
        self.R_t = R_t
        self.x_0 = x_0
        self.y_0 = y_0
        self.d_t = d_t
        self.d_r = d_r

#双线性
    def interpolate_bilinear(self,ri, rf, rc, yi, yf, yc):
        if yf == yc & rc == rf:
            out = img[yc][rc]
        elif yf == yc:
            out = (ri - rf) * img[yf][rc] + (rc - ri) * img[yf][rf]
        elif rf == rc:
            out = (yi - yf) * img[yc][rf] + (yc - yi) * img[yf][rf]
        else:
            inter_r1 = (ri - rf) * img[yf][rc] + (rc - ri) * img[yf][rf]
            inter_r2 = (ri - rf) * img[yc][rc] + (rc - ri) * img[yc][rf]
            out = (yi - yf) * inter_r2 + (yc - yi) * inter_r1
        return out
#最邻近
    def interpolate_adjacent(self,ri, rf, rc, yi, yf, yc):
        r = 0
        if (ri - rf) > (rc - ri):
            r = rc
        else:
            r = rf
        if (yi - yf) > (yc - yi):
            if yc >= M:
                y = M - 1
            else:
                y = yc
        else:
            if yf >= M:
                y = M - 1
            else:
                y = yf
        out = img[y][r]
        return out

    def cal(self):
        for i in range(R_r):
            for y in range(R_t):
                print(i, y)
                if i == 0:
                    Conversion.dst[i][y] = img[x_0][y_0]
                elif y >= 0 & y < (R_t / 4):
                    self.condition_1(i,y)

                elif y >= R_t / 4 & y < (R_t / 2):
                    self.condition_2(i,y)

                elif y >= (R_t / 2) & y < (R_t * 3 / 4):
                    self.condition_3(i,y)

                elif y >= (R_t * 3 / 4) & y <= R_t:
                    self.condition_4(i,y)

    def condition_1(self,i,y):
        xi = np.sqrt(np.power(i * d_r, 2) / (1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) + x_0
        xf = np.int_(np.floor(xi))
        xc = np.int_(np.ceil(xi))
        yi = np.sqrt((np.power(i * d_r, 2) * np.power(np.tan(y * d_t / 180 * Conversion.PI), 2)) / (
                1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) + y_0
        yf = np.int_(np.floor(yi))
        yc = np.int_(np.ceil(yi))
        # dst[i][y] = self.interpolate_adjacent(xi,xf,xc,yi,yf,yc)
        Conversion.dst[i][y] = self.interpolate_bilinear(xi, xf, xc, yi, yf, yc)
    def condition_2(self,i,y):
        xi = abs(np.sqrt(np.power(i * d_r, 2) / (1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) - x_0)
        xf = np.int_(np.floor(xi))
        xc = np.int_(np.ceil(xi))
        yi = np.sqrt((np.power(i * d_r, 2) * np.power(np.tan(*d_t * Conversion.PI), 2)) / (
                1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) + y_0
        yf = np.int_(np.floor(yi))
        yc = np.int_(np.ceil(yi))
        # dst[i][y] = interpolate_adjacent(xi, xf, xc, yi, yf, yc)
        Conversion.dst[i][y] = self.interpolate_bilinear(xi, xf, xc, yi, yf, yc)
    def condition_3(self,i,y):
        xi = abs(np.sqrt(np.power(i * d_r, 2) / (1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) - x_0)
        xf = np.int_(np.floor(xi))
        xc = np.int_(np.ceil(xi))
        yi = abs(np.sqrt((np.power(i * d_r, 2) * np.power(np.tan(y * d_t / 180 * Conversion.PI), 2)) / (
                1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) - y_0)
        yf = np.int_(np.floor(yi))
        yc = np.int_(np.ceil(yi))
        # dst[i][y] = self.interpolate_adjacent(xi, xf, xc, yi, yf, yc)
        Conversion.dst[i][y] = self.interpolate_bilinear(xi, xf, xc, yi, yf, yc)
    def condition_4(self,i,y):
        xi = np.sqrt(np.power(i * d_r, 2) / (1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) + x_0
        xf = np.int_(np.floor(xi))
        xc = np.int_(np.ceil(xi))
        yi = abs(np.sqrt((np.power(i * d_r, 2) * np.power(np.tan(y * d_t / 180 * Conversion.PI), 2)) / (
                1 + np.power(np.tan(y * d_t / 180 * Conversion.PI), 2))) - y_0)
        yf = np.int_(np.floor(yi))
        yc = np.int_(np.ceil(yi))
        # dst[i][y] = self.interpolate_adjacent(xi, xf, xc, yi, yf, yc)
        Conversion.dst[i][y] = self.interpolate_bilinear(xi, xf, xc, yi, yf, yc)
p = Conversion()
p.cal()
img_gray= color.rgb2gray(p.dst)
plt.imshow(p.dst,cmap='gray')
plt.show()

看一下结果:

Python处理图像—将笛卡尔坐标系转换为极坐标系_第3张图片
分享知识,造福人民,为实现我们中华民族伟大复兴!祝大家越来越好!

你可能感兴趣的:(Python处理图像—将笛卡尔坐标系转换为极坐标系)