# -*- coding: utf-8 -*-
import netCDF4,numpy
from netCDF4 import Dataset
a=Dataset('/home/rosfun/Downloads/olr.mon.mean.nc')
print(a.variables.keys())
dict_keys(['lon', 'lat', 'time', 'olr'])
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import numpy as np
import netCDF4
from netCDF4 import Dataset
nc_obj=Dataset('/home/rosfun/Downloads/olr.mon.mean.nc')
print(nc_obj.variables.keys())
#查看nc文件有些啥东东
print(nc_obj)
print('---------------------------------------')
#查看nc文件中的变量
print(nc_obj.variables.keys())
for i in nc_obj.variables.keys():
print(i)
print('---------------------------------------')
#查看每个变量的信息
print(nc_obj.variables['lat'])
print(nc_obj.variables['lon'])
print(nc_obj.variables['time'])
print(nc_obj.variables['olr'])
# print(nc_obj.variables['obs_operator'])
# print(nc_obj.variables['obs_err_var'])
# print('---------------------------------------')
'''
#查看每个变量的属性
print(nc_obj.variables['LAT'].ncattrs())
print(nc_obj.variables['LON'].ncattrs())
print(nc_obj.variables['PRCP'].ncattrs())
print(nc_obj.variables['LAT'].units)
print(nc_obj.variables['LON'].units)
print(nc_obj.variables['PRCP']._Fillvalue)
print('---------------------------------------')
'''
#读取数据值
lat=(nc_obj.variables['lat'][:])
lon=(nc_obj.variables['lon'][:])
time=(nc_obj.variables['time'][:])
olr=(nc_obj.variables['olr'][:])
# Obs_Operator=(nc_obj.variables['obs_operator'][:])
# Obs_Err_var=(nc_obj.variables['obs_err_var'][:])
# Xb = [0,0,0]
# for i in range(len(Prior)):
# xb = []
# for j in range(len(Prior[0,0,0,:])):
# # print("j = " , j)
# xi = Prior[i,:,:,j]
# xim = np.mean(xi)
# # print("xi = " , xi)
# xb.append(xim)
# # print("xb = " , xb)
# Xb = np.c_[Xb,xb]
# Xb = Xb.T
# Xb = Xb[1:,:]
# print("Prior = " , Xb , Xb.shape)
# Xa = [0,0,0]
# for i in range(len(Posterior)):
# xa = []
# for j in range(len(Posterior[0,0,0,:])):
# # print("j = " , j)
# xi = Posterior[i,:,:,j]
# xim = np.mean(xi)
# # print("xi = " , xi)
# xa.append(xim)
# # print("xb = " , xb)
# Xa = np.c_[Xa,xa]
# Xa = Xa.T
# Xa = Xa[1:,:]
# print("Posterior = " , Xa , Xa.shape)
print("lat = "+ '\n',lat , lat.shape)
print('-------------------******-------------------------')
print("lon = "+ '\n',lon , lon.shape)
print('-------------------******-------------------------')
print("time = "+ '\n',time , time.shape)
print('-------------------******-------------------------')
print("olr = "+ '\n',olr , olr.shape)
print('-------------------******-------------------------')
# print("Obs_Operator = "+ '\n',Obs_Operator)
# print('-------------------******-------------------------')
# print("Obs_Err_var = "+ '\n',Obs_Err_var)
dict_keys(['lon', 'lat', 'time', 'olr'])
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
title: Monthly means of OLR from interpolated OLR dataset
history: Created from daily OLR files obtained at NCEP and further processed. Stored in netCDF in 1996. Last update 10/2003
description: Data is interpolated in time and space from NOAA twice-daily OLR values and averaged to once daily (from which means are calculated)
platform: Observation
Conventions: CF-1.2
References: https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
references: https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
Citation: Liebmann and Smith: June 2006: Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bulletin of the American Meteorological Society, 77, 1275-1277
dataset_title: NOAA Interpolated Outgoing Longwave Radiation (OLR)
source: ftp.cpc.ncep.noaa.gov precip/noaa..
date_modified: 12 Feb 2019
dimensions(sizes): lon(144), lat(73), nmiss(7), time(535)
variables(dimensions): float32 lon(lon), float32 lat(lat), float64 time(time), int16 olr(time,lat,lon)
groups:
---------------------------------------
dict_keys(['lon', 'lat', 'time', 'olr'])
lon
lat
time
olr
---------------------------------------
float32 lat(lat)
units: degrees_north
actual_range: [ 90. -90.]
long_name: Latitude
standard_name: latitude
axis: Y
unlimited dimensions:
current shape = (73,)
filling on, default _FillValue of 9.969209968386869e+36 used
float32 lon(lon)
units: degrees_east
long_name: Longitude
actual_range: [ 0. 360.]
standard_name: longitude
axis: X
unlimited dimensions:
current shape = (144,)
filling on, default _FillValue of 9.969209968386869e+36 used
float64 time(time)
units: hours since 1800-01-01 00:00:0.0
long_name: Time
actual_range: [1528872. 1918968.]
delta_t: 0000-01-00 00:00:00
avg_period: 0000-01-00 00:00:00
standard_name: time
axis: T
unlimited dimensions: time
current shape = (535,)
filling on, default _FillValue of 9.969209968386869e+36 used
int16 olr(time, lat, lon)
long_name: OLR monthly means
unpacked_valid_range: [ 0. 500.]
actual_range: [138.80646 297.41354]
units: W/m^2
add_offset: 327.65
scale_factor: 0.01
missing_value: 32766
var_desc: Outgoing Longwave Radiation
precision: 2
dataset: NOAA Interpolated OLR
level_desc: Other
statistic: Mean
parent_stat: Individual Obs
valid_range: [-32765 17235]
unlimited dimensions: time
current shape = (535, 73, 144)
filling on, default _FillValue of -32767 used
lat =
[ 90. 87.5 85. 82.5 80. 77.5 75. 72.5 70. 67.5 65. 62.5
60. 57.5 55. 52.5 50. 47.5 45. 42.5 40. 37.5 35. 32.5
30. 27.5 25. 22.5 20. 17.5 15. 12.5 10. 7.5 5. 2.5
0. -2.5 -5. -7.5 -10. -12.5 -15. -17.5 -20. -22.5 -25. -27.5
-30. -32.5 -35. -37.5 -40. -42.5 -45. -47.5 -50. -52.5 -55. -57.5
-60. -62.5 -65. -67.5 -70. -72.5 -75. -77.5 -80. -82.5 -85. -87.5
-90. ] (73,)
-------------------******-------------------------
lon =
[ 0. 2.5 5. 7.5 10. 12.5 15. 17.5 20. 22.5 25. 27.5
30. 32.5 35. 37.5 40. 42.5 45. 47.5 50. 52.5 55. 57.5
60. 62.5 65. 67.5 70. 72.5 75. 77.5 80. 82.5 85. 87.5
90. 92.5 95. 97.5 100. 102.5 105. 107.5 110. 112.5 115. 117.5
120. 122.5 125. 127.5 130. 132.5 135. 137.5 140. 142.5 145. 147.5
150. 152.5 155. 157.5 160. 162.5 165. 167.5 170. 172.5 175. 177.5
180. 182.5 185. 187.5 190. 192.5 195. 197.5 200. 202.5 205. 207.5
210. 212.5 215. 217.5 220. 222.5 225. 227.5 230. 232.5 235. 237.5
240. 242.5 245. 247.5 250. 252.5 255. 257.5 260. 262.5 265. 267.5
270. 272.5 275. 277.5 280. 282.5 285. 287.5 290. 292.5 295. 297.5
300. 302.5 305. 307.5 310. 312.5 315. 317.5 320. 322.5 325. 327.5
330. 332.5 335. 337.5 340. 342.5 345. 347.5 350. 352.5 355. 357.5] (144,)
-------------------******-------------------------
time =
[1528872. 1529592. 1530336. 1531080. 1531800. 1532544. 1533264. 1534008.
1534752. 1535424. 1536168. 1536888. 1537632. 1538352. 1539096. 1539840.
1540560. 1541304. 1542024. 1542768. 1543512. 1544208. 1544952. 1545672.
1546416. 1547136. 1547880. 1548624. 1549344. 1550088. 1550808. 1551552.
1552296. 1552968. 1553712. 1554432. 1555176. 1555896. 1556640. 1557384.
1558104. 1558848. 1559568. 1560312. 1561056. 1561728. 1562472. 1563192.
1563936. 1564656. 1565400. 1566144. 1566864. 1567608. 1568328. 1569072.
1569816. 1570488. 1571232. 1571952. 1572696. 1573416. 1574160. 1574904.
1575624. 1576368. 1577088. 1577832. 1578576. 1579272. 1580016. 1580736.
1581480. 1582200. 1582944. 1583688. 1584408. 1585152. 1585872. 1586616.
1587360. 1588032. 1588776. 1589496. 1590240. 1590960. 1591704. 1592448.
1593168. 1593912. 1594632. 1595376. 1596120. 1596792. 1597536. 1598256.
1599000. 1599720. 1600464. 1601208. 1601928. 1602672. 1603392. 1604136.
1604880. 1605552. 1606296. 1607016. 1607760. 1608480. 1609224. 1609968.
1610688. 1611432. 1612152. 1612896. 1613640. 1614336. 1615080. 1615800.
1616544. 1617264. 1618008. 1618752. 1619472. 1620216. 1620936. 1621680.
1622424. 1623096. 1623840. 1624560. 1625304. 1626024. 1626768. 1627512.
1628232. 1628976. 1629696. 1630440. 1631184. 1631856. 1632600. 1633320.
1634064. 1634784. 1635528. 1636272. 1636992. 1637736. 1638456. 1639200.
1639944. 1640616. 1641360. 1642080. 1642824. 1643544. 1644288. 1645032.
1645752. 1646496. 1647216. 1647960. 1648704. 1649400. 1650144. 1650864.
1651608. 1652328. 1653072. 1653816. 1654536. 1655280. 1656000. 1656744.
1657488. 1658160. 1658904. 1659624. 1660368. 1661088. 1661832. 1662576.
1663296. 1664040. 1664760. 1665504. 1666248. 1666920. 1667664. 1668384.
1669128. 1669848. 1670592. 1671336. 1672056. 1672800. 1673520. 1674264.
1675008. 1675680. 1676424. 1677144. 1677888. 1678608. 1679352. 1680096.
1680816. 1681560. 1682280. 1683024. 1683768. 1684464. 1685208. 1685928.
1686672. 1687392. 1688136. 1688880. 1689600. 1690344. 1691064. 1691808.
1692552. 1693224. 1693968. 1694688. 1695432. 1696152. 1696896. 1697640.
1698360. 1699104. 1699824. 1700568. 1701312. 1701984. 1702728. 1703448.
1704192. 1704912. 1705656. 1706400. 1707120. 1707864. 1708584. 1709328.
1710072. 1710744. 1711488. 1712208. 1712952. 1713672. 1714416. 1715160.
1715880. 1716624. 1717344. 1718088. 1718832. 1719528. 1720272. 1720992.
1721736. 1722456. 1723200. 1723944. 1724664. 1725408. 1726128. 1726872.
1727616. 1728288. 1729032. 1729752. 1730496. 1731216. 1731960. 1732704.
1733424. 1734168. 1734888. 1735632. 1736376. 1737048. 1737792. 1738512.
1739256. 1739976. 1740720. 1741464. 1742184. 1742928. 1743648. 1744392.
1745136. 1745808. 1746552. 1747272. 1748016. 1748736. 1749480. 1750224.
1750944. 1751688. 1752408. 1753152. 1753896. 1754592. 1755336. 1756056.
1756800. 1757520. 1758264. 1759008. 1759728. 1760472. 1761192. 1761936.
1762680. 1763352. 1764096. 1764816. 1765560. 1766280. 1767024. 1767768.
1768488. 1769232. 1769952. 1770696. 1771440. 1772112. 1772856. 1773576.
1774320. 1775040. 1775784. 1776528. 1777248. 1777992. 1778712. 1779456.
1780200. 1780872. 1781616. 1782336. 1783080. 1783800. 1784544. 1785288.
1786008. 1786752. 1787472. 1788216. 1788960. 1789656. 1790400. 1791120.
1791864. 1792584. 1793328. 1794072. 1794792. 1795536. 1796256. 1797000.
1797744. 1798416. 1799160. 1799880. 1800624. 1801344. 1802088. 1802832.
1803552. 1804296. 1805016. 1805760. 1806504. 1807176. 1807920. 1808640.
1809384. 1810104. 1810848. 1811592. 1812312. 1813056. 1813776. 1814520.
1815264. 1815936. 1816680. 1817400. 1818144. 1818864. 1819608. 1820352.
1821072. 1821816. 1822536. 1823280. 1824024. 1824720. 1825464. 1826184.
1826928. 1827648. 1828392. 1829136. 1829856. 1830600. 1831320. 1832064.
1832808. 1833480. 1834224. 1834944. 1835688. 1836408. 1837152. 1837896.
1838616. 1839360. 1840080. 1840824. 1841568. 1842240. 1842984. 1843704.
1844448. 1845168. 1845912. 1846656. 1847376. 1848120. 1848840. 1849584.
1850328. 1851000. 1851744. 1852464. 1853208. 1853928. 1854672. 1855416.
1856136. 1856880. 1857600. 1858344. 1859088. 1859784. 1860528. 1861248.
1861992. 1862712. 1863456. 1864200. 1864920. 1865664. 1866384. 1867128.
1867872. 1868544. 1869288. 1870008. 1870752. 1871472. 1872216. 1872960.
1873680. 1874424. 1875144. 1875888. 1876632. 1877304. 1878048. 1878768.
1879512. 1880232. 1880976. 1881720. 1882440. 1883184. 1883904. 1884648.
1885392. 1886064. 1886808. 1887528. 1888272. 1888992. 1889736. 1890480.
1891200. 1891944. 1892664. 1893408. 1894152. 1894848. 1895592. 1896312.
1897056. 1897776. 1898520. 1899264. 1899984. 1900728. 1901448. 1902192.
1902936. 1903608. 1904352. 1905072. 1905816. 1906536. 1907280. 1908024.
1908744. 1909488. 1910208. 1910952. 1911696. 1912368. 1913112. 1913832.
1914576. 1915296. 1916040. 1916784. 1917504. 1918248. 1918968.] (535,)
-------------------******-------------------------
olr =
[[[207.6099853515625 207.6099853515625 207.6099853515625 ...
207.6099853515625 207.6099853515625 207.6099853515625]
[208.64999389648438 208.55999755859375 208.47000122070312 ...
208.91000366210938 208.82998657226562 208.739990234375]
[210.51998901367188 210.20999145507812 209.91000366210938 ...
211.27999877929688 211.05999755859375 210.7899932861328]
...
[118.5 117.85000610351562 117.24000549316406 ... 120.33999633789062
119.72000122070312 119.1300048828125]
[119.44000244140625 119.19999694824219 118.97000122070312 ...
120.1199951171875 119.8800048828125 119.67999267578125]
[112.66999816894531 112.66999816894531 112.66999816894531 ...
112.66999816894531 112.66999816894531 112.66999816894531]]
[[209.32000732421875 209.32000732421875 209.32000732421875 ...
209.32000732421875 209.32000732421875 209.32000732421875]
[210.83999633789062 210.97999572753906 211.1199951171875 ...
210.35000610351562 210.52999877929688 210.6999969482422]
[214.7899932861328 214.95999145507812 215.10000610351562 ...
214.17999267578125 214.41000366210938 214.6300048828125]
...
[112.44999694824219 112.16000366210938 111.8699951171875 ...
113.27000427246094 113.02000427246094 112.74000549316406]
[110.58999633789062 110.42999267578125 110.22999572753906 ...
111.08999633789062 110.94000244140625 110.77999877929688]
[104.77999877929688 104.77999877929688 104.77999877929688 ...
104.77999877929688 104.77999877929688 104.77999877929688]]
[[207.16000366210938 207.16000366210938 207.16000366210938 ...
207.16000366210938 207.16000366210938 207.16000366210938]
[209.13999938964844 209.22999572753906 209.30999755859375 ...
208.8800048828125 208.97000122070312 209.05999755859375]
[211.10000610351562 211.22000122070312 211.30999755859375 ...
210.64999389648438 210.82998657226562 210.97000122070312]
...
[114.55000305175781 114.13999938964844 113.74000549316406 ...
115.6300048828125 115.28999328613281 114.91000366210938]
[113.47000122070312 113.31999206542969 113.17999267578125 ...
113.83999633789062 113.72000122070312 113.60000610351562]
[109.24000549316406 109.24000549316406 109.24000549316406 ...
109.24000549316406 109.24000549316406 109.24000549316406]]
...
[[188.77000427246094 188.77000427246094 188.77000427246094 ...
188.77000427246094 188.77000427246094 188.77000427246094]
[187.69000244140625 187.69000244140625 187.69000244140625 ...
186.14999389648438 186.14999389648438 186.14999389648438]
[188.739990234375 188.739990234375 188.739990234375 ...
188.77000427246094 188.77000427246094 188.77000427246094]
...
[125.91999816894531 125.91999816894531 125.91999816894531 ...
129.4199981689453 129.4199981689453 129.4199981689453]
[128.0 128.0 128.0 ... 129.08999633789062 129.08999633789062
129.08999633789062]
[127.1300048828125 127.1300048828125 127.1300048828125 ...
127.1300048828125 127.1300048828125 127.1300048828125]]
[[172.9199981689453 172.9199981689453 172.9199981689453 ...
172.9199981689453 172.9199981689453 172.9199981689453]
[172.02000427246094 172.02000427246094 172.02000427246094 ...
170.3699951171875 170.3699951171875 170.3699951171875]
[173.47999572753906 173.47999572753906 173.47999572753906 ...
172.3300018310547 172.3300018310547 172.3300018310547]
...
[146.52999877929688 146.52999877929688 146.52999877929688 ...
150.14999389648438 150.14999389648438 150.14999389648438]
[147.5 147.5 147.5 ... 149.86000061035156 149.86000061035156
149.86000061035156]
[145.27000427246094 145.27000427246094 145.27000427246094 ...
145.27000427246094 145.27000427246094 145.27000427246094]]
[[165.44000244140625 165.44000244140625 165.44000244140625 ...
165.44000244140625 165.44000244140625 165.44000244140625]
[163.91000366210938 163.91000366210938 163.91000366210938 ...
162.94000244140625 162.94000244140625 162.94000244140625]
[169.33999633789062 169.33999633789062 169.33999633789062 ...
169.4499969482422 169.4499969482422 169.4499969482422]
...
[173.19000244140625 173.19000244140625 173.19000244140625 ...
174.38999938964844 174.38999938964844 174.38999938964844]
[172.77000427246094 172.77000427246094 172.77000427246094 ...
173.8199920654297 173.8199920654297 173.8199920654297]
[169.11000061035156 169.11000061035156 169.11000061035156 ...
169.11000061035156 169.11000061035156 169.11000061035156]]] (535, 73, 144)
-------------------******-------------------------
B = np.reshape(olr,(-1,144))
print(B)
print("B的维度:",B.shape)
B = np.reshape(olr,(-1,144))
print(B)
print("B的维度:",B.shape)
B = np.reshape(olr,(-1,144))
print(B)
print("B的维度:",B.shape)
[[207.6099853515625 207.6099853515625 207.6099853515625 ...
207.6099853515625 207.6099853515625 207.6099853515625]
[208.64999389648438 208.55999755859375 208.47000122070312 ...
208.91000366210938 208.82998657226562 208.739990234375]
[210.51998901367188 210.20999145507812 209.91000366210938 ...
211.27999877929688 211.05999755859375 210.7899932861328]
...
[173.19000244140625 173.19000244140625 173.19000244140625 ...
174.38999938964844 174.38999938964844 174.38999938964844]
[172.77000427246094 172.77000427246094 172.77000427246094 ...
173.8199920654297 173.8199920654297 173.8199920654297]
[169.11000061035156 169.11000061035156 169.11000061035156 ...
169.11000061035156 169.11000061035156 169.11000061035156]]
B的维度: (39055, 144)
import numpy
numpy.savetxt('/home/rosfun/Downloads/olr的经度.csv', lon, delimiter = ',')
numpy.savetxt('/home/rosfun/Downloads/olr维度.csv', lat, delimiter = ',')
numpy.savetxt('/home/rosfun/Downloads/olr的.csv', B, delimiter = ',')
numpy.savetxt('/home/rosfun/Downloads/olr时间间隔一个月.csv', time, delimiter = ',')