POJ2387 最短回家路径(单源最短路径)

给定N个点以及它们之间的一些双向路径,求出从第N个点到第1个点的最短路径。

纯粹的单源最短路径题目,图的点最多有1000个,而边最多有2000条(题目数据量不对,数据中可能包含多于2000条边的数据),即边数并没有点数的平方那么多,因此应该考虑使用邻接表存储图,然后采用SPFA或者堆优化的DIJKSTRA求解。

#include 
#include 
#include 
using namespace std;

const int N = 1005;
const int E = 20005;
const int MAX = 0xfffffff;

struct Edge
{
	int pnt;
	int dis;
	int next;
}edge[E];
int cur;
int neigh[N];
int n, e;
int mindis[N];
int que[N], front, rear;
bool inque[N];

void init()
{
	cur = 0;
	for (int i = 0; i < n; ++i) neigh[i] = -1;
}

void addedge(int beg, int end, int dis)
{
	edge[cur].pnt = end;
	edge[cur].dis = dis;
	edge[cur].next = neigh[beg];
	neigh[beg] = cur;
	++cur;
}

void spfa(int s)
{
	for (int i = 0; i < n; ++i) 
	{
		mindis[i] = MAX;
		inque[i] = false;
	}
	front = rear = 0;
	mindis[s] = 0;
	inque[s] = true;
	que[rear++] = s;
	while (front != rear)
	{
		int pre = que[front];
		inque[pre] = false;
		int te = neigh[pre];
		while (te != -1)
		{
			int pnt = edge[te].pnt;
			if (mindis[pre] + edge[te].dis < mindis[pnt])
			{
				mindis[pnt] = mindis[pre] + edge[te].dis;
				if (!inque[pnt])
				{
					inque[pnt] = true;
					que[rear++] = pnt;
					if (rear == N) rear = 0;
				}
			}
			te = edge[te].next;
		}
		if (++front == N) front = 0;
	}
}

int main()
{
	int beg, end, dis;
	scanf("%d%d", &e, &n);
	init();
	for (int i = 0; i < e; ++i)
	{
		scanf("%d%d%d", &beg, &end, &dis);
		--beg;
		--end;
		addedge(beg, end, dis);
		addedge(end, beg, dis);
	}
	spfa(n - 1);
	printf("%d\n", mindis[0]);
	return 0;
}


你可能感兴趣的:(ACM解题报告)