2019-08-14 GEO Meta

rm(list = ls())

#install.packages("ggplot2", repos = 'https://mirror.lzu.edu.cn/CRAN/')

library(limma)

library(ggplot2)

projectPath = "E:\\201906GBM"

data4analysisPath = paste(projectPath, "DataForAnalysis", sep = "/")

deaPath = paste(projectPath, "DEA", sep = "/")

if(!dir.exists(deaPath)) dir.create(deaPath)  # 新建一个DEA文件夹,存放差异表达分析结果

datasets = c("GSE18842", "GSE19804", "GSE43458", "GSE62113")

for (dataset in datasets){

    setwd(data4analysisPath)

    dataset = "GSE15824"

    #GenesExp = read.table(paste(dataset, "_GenesExpData.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")




    # 对每组数据,提取样本分组信息

    if(dataset == "GSE108474"){  # 28个Normal, 221个Tumor

      SampleInfo = read.table(paste(dataset, "_SampleInfo.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")

      SampleInfo = SampleInfo[-c(543:550),]

      group_list = as.character( SampleInfo[, 11] )

      load("GSE108474_exprSet.Rdata")

      exprSet <- GSE108474_exprSet[,-c(543:550)]

      n_expr = exprSet[ , grep( "normal",        group_list )]

      g_expr = exprSet[ , grep( "glioblastoma",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }

    if(dataset == "GSE4290"){  # 23个Normal, 77个Tumor

      SampleInfo = read.table(paste(dataset, "_SampleInfo.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")

      group_list = as.character( SampleInfo[, 35] )

      load("exprSet_GSE4290.Rdata")

      exprSet <- exprSet_GSE4290

      n_expr = exprSet[ , grep( "non-tumor",        group_list )]

      g_expr = exprSet[ , grep( "glioblastoma",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }

    if(dataset == "GSE15824"){  # 5个Normal, 12个Tumor

      SampleInfo = read.table(paste(dataset, "_SampleInfo.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")

      group_list = as.character( SampleInfo[, 1] )

      load("exprSet_GSE15824.Rdata")

      exprSet <- exprSet_GSE15824

      ex <- exprSet

      qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))

      LogC <- (qx[5] > 100) ||

        (qx[6]-qx[1] > 50 && qx[2] > 0) ||

        (qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)


      if (LogC) { ex[which(ex <= 0)] <- NaN

      exprSet <- log2(ex)

      print("log2 transform finished")}else{print("log2 transform not needed")}



      n_expr = exprSet[ , grep( "normal",        group_list )]

      g_expr = exprSet[ , grep( "Glioblastoma",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }

    if(dataset == "GSE50161"){  # 13个Normal, 34个Tumor

      SampleInfo = read.csv("GSE50161_SampleInfo.csv")


      group_list = as.character( SampleInfo[, 9] )

      load("exprSet_GSE50161.Rdata")

      exprSet <- exprSet_GSE50161

      n_expr = exprSet[ , grep( "normal",        group_list )]

      g_expr = exprSet[ , grep( "glioblastoma",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }

    if(dataset == "GSE116520"){  # 8个Normal, 17个Tumor

      SampleInfo = read.table(paste(dataset, "_SampleInfo.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")

      group_list = as.character( SampleInfo[, 1] )

      load("GSE116520_exprSet.Rdata")

      exprSet <- GSE116520_exprSet

      n_expr = exprSet[ , grep( "Control",        group_list )]

      g_expr = exprSet[ , grep( "Tumour",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }

    if(dataset == "GSE90598"){  # 7个Normal, 16个Tumor

      SampleInfo = read.table(paste(dataset, "_SampleInfo.txt", sep = ""), header = T, row.names = 1, sep = "\t", quote = "")

      group_list = as.character( SampleInfo[, 1] )

      load("GSE90598_exprSet.Rdata")

      exprSet <- GSE90598_exprSet

      n_expr = exprSet[ , grep( "Healthy",        group_list )]

      g_expr = exprSet[ , grep( "Glioblastoma",      group_list )]

      exprSet = cbind( n_expr, g_expr )

      group_list = c(rep( 'Normal', ncol( n_expr ) ),

                    rep( 'Tumor',    ncol( g_expr ) ) )

      table(group_list)

    }


    DataForDEA = exprSet

    SG = factor(group_list)

    # limma 差异表达分析

    if(dataset == "GSE19804"){      # 配对的

        SI = factor(c(1:9,1:9))  # SampleInfo$title

        design = model.matrix(~SI+SG)

        fit = lmFit(DataForDEA, design)

        fit2 = eBayes(fit)

        result = topTable(fit2, coef = "SGTumor", number = nrow(DataForDEA))    # 默认number只输出10个

    }else{  # 非配对的

        design = model.matrix(~0+SG)

        colnames(design) = levels(SG)

        contrast.matrix = makeContrasts(contrasts = "Tumor-Normal", levels = design)

        fit = lmFit(DataForDEA, design)

        fit2 = contrasts.fit(fit, contrast.matrix)

        fit2 = eBayes(fit2)

        result = topTable(fit2, coef = 1, number = nrow(DataForDEA))    # 默认number只输出10个

    }

    sig_result = subset(result, abs(logFC) >= 1 & adj.P.Val < 0.05)

    # 输出结果

    setwd(deaPath)

    write.csv(result[,c(1,2,4,5)], paste(dataset, "_all_result.csv", sep = ""))

    write.csv(sig_result[,c(1,2,4,5)], paste(dataset, "_sig_result.csv", sep = ""))


    #### vacano plot

    va_info = result[, c("logFC", "adj.P.Val")]

    va_info$Significant = 0

    for(i in 1:nrow(va_info)){

        va_info[is.na(va_info)] = 0

        if(va_info[i, 1] >= 1 & va_info[i, 2] < 0.05){

            va_info[i, 3] = "Up"

        }else if(va_info[i, 1] <= (-1) & va_info[i, 2] < 0.05){

            va_info[i, 3] = "Down"

        }else{

            va_info[i, 3] = "Normal"

        }

    }

    max_y = max(abs(c(max(va_info$logFC), min(va_info$logFC))))+1

    va_info$Significant = factor(va_info$Significant, levels = c("Up", "Normal", "Down"))

    # set color  http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

    cols = c("Up" = "#ff0000", "Normal" = "gray30", "Down" = "#32cd32")

    pdf(paste(dataset, "_vacanoplot.pdf", sep = ""), width = 6, height = 5)

    p = ggplot(data = va_info, aes(x = -log10(adj.P.Val), y = logFC, colour = Significant)) + ylim(-max_y, max_y) + scale_colour_manual(values = cols) + geom_point() + geom_hline(yintercept = 0, linetype = "dashed", color = "gray20", size = 1) + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + theme(legend.box.margin = margin(0,0,0,-10)) # + theme(legend.position="none")    # 删除所有legend

    print(p)

    dev.off()

}

你可能感兴趣的:(2019-08-14 GEO Meta)