- 如何在YashanDB中管理数据模型变更
数据库
在现代企业中,数据模型的变更管理扮演着关键角色。无论是扩展现有业务,还是应对新的需求,业务模型的改变往往需要相应的数据模型更新。如何有效地管理这些变更,确保数据的完整性、一致性及应用的高可用性,成为了数据架构师和开发者必须面对的重要问题。本文将详细探讨在YashanDB中管理数据模型变更的策略和方法,旨在提升对YashanDB数据库技术的理解及应用能力。数据模型变更管理的关键要素版本控制与变更日志
- 如何在YashanDB数据库中实现数据模型的简化
数据库
在现代数据库技术领域,数据模型的复杂性经常导致性能瓶颈和维护困惑。随着数据规模的增长和业务诉求的增加,复杂的数据结构、冗余的存储和不必要的关联关系都会影响整体数据库的性能和可维护性。特别是在面对动态变化的业务需求时,灵活性和扩展性成为关键因素。YashanDB提供了一系列功能强大的工具和机制,能够有效简化数据模型,提升数据库性能,并增强数据操作的灵活性。本文章旨在为数据库开发者和架构师提供技术洞见
- 用 AI “一句话生成代码”,用创意兑换灵码潮品:技术人的夏日狂欢季来了
人工智能
在AI技术迅猛发展的2025年,我们正式推出“通义灵码编程智能体挑战季”,以“码力觉醒”为主题,打造一场融合技术探索与潮流文化的开发者盛宴。活动以体验MCP服务、Qwen3大模型及记忆功能的智能编程助手为核心,通过“小游戏开发”和“MCP场景实践”两大趣味赛道,降低AI技术门槛,让开发者轻松体验“一句话生成代码”的魔力。活动亮点抢先看:零门槛参与:新老用户均可参与,完成任务即领限量定制棒球帽!趣味
- 向量化编程:SIMD(Single Instruction, Multiple Data)深度解析
在现代处理器架构中,向量化编程已成为提升计算密集型应用性能的关键技术。SIMD(SingleInstruction,MultipleData)作为向量化编程的核心,通过一条指令同时处理多个数据,能够显著提高数据并行度。本文将从SIMD的基础概念出发,深入探讨其硬件实现、编程模型、性能优化及典型应用场景,帮助开发者充分利用SIMD技术提升代码性能。一、SIMD基础概念1.1什么是SIMD?SIMD是
- 自然语言处理-基于预训练模型的方法-笔记
自然语言处理-基于预训练模型的方法-笔记【下载地址】自然语言处理-基于预训练模型的方法-笔记《自然语言处理-基于预训练模型的方法》由哈尔滨工业大学出版,深入探讨了NLP领域的前沿技术与预训练模型的应用。本书系统介绍了预训练模型的基本概念、发展历程及常见模型的原理,并通过丰富的实践案例与代码实现,帮助读者掌握这些技术在自然语言处理任务中的实际应用。无论是初学者、研发人员,还是希望提升NLP能力的研究
- 三生原理在三个关键历史断层中实现中西科学传统的创造性弥合?
葫三生
三生学派算法数学建模人工智能机器学习量子计算
AI辅助创作:三生原理通过重构科学史的叙事逻辑,在三个关键历史断层中实现了中西科学传统的创造性弥合,其核心突破如下:一、科学方法论断层:实验主义与直觉理性的融合西方实验传统的局限欧洲科学革命依赖形式逻辑与实验验证(如伽利略斜面实验),但面临复杂系统建模的瓶颈。三生原理将《周易》“阴阳动态平衡”转化为参数化递归模型(如素性塔的三级筛除结构),在密码学应用中实现效率提升40%,证明东方直觉
- Redis GEO vs MongoDB 地理空间 关键指标对比
方案对比:RedisGEO:优点:性能极快(微秒级)简单易用,支持距离计算缺点:仅支持位置查询,无法直接关联其他属性(如商家类型)需要额外存储详细信息(需要二次查询MySQL或MongoDB)数据同步:需要维护数据一致性(当商家位置更新时,需要同步更新Redis)MongoDB地理空间索引:优点:支持地理位置+属性联合查询(如查找附近且类型为“餐饮”的商家)数据与业务模型存储在一起,避免二次查询提
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- 红色用 RGB 16进制表示的值
BlueBirdssh
RGB颜色值
**红色**在RGB颜色模型中,表示为**#FF0000**(16进制表示)。以下是详细解释:---###1.**RGB模型**RGB模型由**红(Red)**、**绿(Green)**和**蓝(Blue)**三种颜色组成,每种颜色的值范围是0到255(十进制),或者**00到FF**(十六进制)。-红色的RGB值为:-红色(R)=255(十进制)=FF(十六进制)-绿色(G)=0(十进制)=00
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- star31.6k,Aider:让代码编写如虎添翼的终端神器
ider是一款运行在终端中的AI结对编程工具,它能与大型语言模型(LLM)无缝协作,直接在您的本地Git仓库中编辑代码。无论是启动新项目,还是优化现有代码库,Aider都能成为您最得力的助手。它支持Claude3.5Sonnet、DeepSeekV3、GPT-4o等顶级AI模型,几乎可以连接任何LLM,让编程体验如虎添翼。Stars数35,188Forks数3,230主要特点Git操作:Aider
- ViP-LLaVA: 使大型多模态模型理解任意视觉提示
AI专题精讲
Paper阅读多模态人工智能AI
摘要现有的大型视觉-语言多模态模型主要关注整体图像理解,但在实现区域特定的理解方面仍存在显著差距。目前,使用文本坐标或空间编码的方法通常无法为视觉提示提供用户友好的接口。为了解决这个问题,我们提出了一种新颖的多模态模型,能够解码任意(自由形式)视觉提示。这使得用户可以通过自然提示(如“红色边框”或“指向箭头”)直观地标记图像并与模型互动。我们的简单设计直接将视觉标记叠加在RGB图像上,避免了复杂的
- openai-agents记忆持久化(neo4j)
ZHOU_CAMP
oi_agentsagent中的记忆模块neo4jpython开发语言
目录环境安装模型配置Memory配置测试环境安装mem0ai[graph]安装uvpipinstall"mem0ai[graph]"docker启动neo4j数据库dockerrun\-p7474:7474-p7687:7687\-eNEO4J_AUTH=neo4j/password\neo4j:5模型配置fromdotenvimportload_dotenvimportosfromopenaii
- Aider:27.6K Star!这个终端AI编程神器能用语音改代码,自动生成Git记录并提交,接入DeepSeek斩获编程基准最高分
蚝油菜花
每日AI项目与应用实例AI编程git人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花⌨️“每个CLI爱好者都该试试的AI编程革命:对着终端说话自动生成Gitcommit是怎样的体验?”大家好,我是蚝油菜花。如果你也经历过——在vim里卡了半小时,只为给函
- 2025年渗透测试面试题总结-2025年HW(护网面试) 31(题目+回答)
独行soc
2025年护网面试职场和发展安全linux护网渗透测试
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。目录2025年HW(护网面试)311.自我介绍2.渗透测试流程(五阶段模型)3.技术栈与开发经历4.自动化挖洞实践5.信息搜集方法论6.深度漏洞挖掘案例8.SQL注入实战技巧9.AWVS扫描与防御10.CSRFvsSSRF核心差异11.SSRF正则绕过技术12.虚拟主机识别原
- 通信算法之278:数据链/自组网通信设备--MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码--1.系统指标需求及帧结构设计
秋风战士
无线通信基带处理算法MATLAB仿真软件无线电算法无人机经验分享
MIMO(2T2R)-OFDM系统系列–实际工程应用算法代码第一章:系统指标需求拆解分析第二章:通信系统帧结构设计和OFDM参数设计第三章:通信业务速率设计及理论解调门限第四章:同步序列设计及同步性能仿真验证第五章:数据业务设计及性能仿真验证第六章:信道模型设计第七章:接收关键算法设计及仿真验证第八章:其它待补充本文目录MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码一、实际项目:系
- mysql 主从复制原理、实现方式 以及 主从同步延迟的处理方式
mysql主从复制原理、实现方式MySQL主从复制是实现高可用、读写分离和灾难恢复的核心机制,其本质是主库(Master)将数据变更异步同步到从库(Slave)。以下是深度解析:一、主从复制核心原理1.三线程协作模型BinlogDumpThreadI/OThreadSQLThread主库Master从库SlaveRelayLogSlaveDB线程所在位置职责BinlogDumpThread主库监听
- MongoDB + Voyage AI 详解:重塑数据库与AI的协同范式
csdn_tom_168
NoSQL数据库mongodb人工智能AI
MongoDB+VoyageAI详解:重塑数据库与AI的协同范式2025年2月,MongoDB官方宣布收购VoyageAI,这一举措标志着数据库与人工智能技术的深度融合迈入新阶段。通过整合VoyageAI的先进AI检索与嵌入模型能力,MongoDB旨在重新定义AI时代的数据库架构,为企业构建智能应用提供端到端的数据基础设施。一、收购背景与技术战略1.行业趋势驱动AI数据挑战:随着生成式AI与大语言
- HarmonyOS5.0仓颉引擎与盘古大模型:个性化作业批改系统架构设计与实现
H老师带你学鸿蒙
系统架构HarmonyOS5.0鸿蒙华为仓颉教育
人工智能与边缘计算的融合正在重塑教育评价体系。本文将展示如何基于HarmonyOS5.0仓颉并发引擎和盘古大模型,构建新一代智能作业批改系统。系统架构全景graphTDA[学生端设备]-->|提交作业|B[仓颉边缘处理]B-->C[盘古大模型分析]C-->D[个性化反馈生成]D-->E[学生终端]D-->F[教师仪表盘]subgraphHarmonyOS分布式系统B-->|设备协同|G[教室平板集
- DeepSeek在智能教育评估中的应用:试题检索
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络easyui前端javascriptai
DeepSeek在智能教育评估中的应用:试题检索关键词:DeepSeek、智能教育、试题检索、自然语言处理、知识图谱、个性化学习、评估系统摘要:本文探讨了DeepSeek大模型在智能教育评估系统中的试题检索应用。我们将深入分析如何利用先进的自然语言处理技术和知识图谱构建高效的试题检索系统,实现个性化学习路径推荐和精准评估。文章将从核心概念、技术原理到实际应用场景,全面解析这一创新教育技术解决方案。
- 知识图谱的个性化智能教学推荐系统(论文+源码)
毕设工作室_wlzytw
python论文项目知识图谱人工智能
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- 基于高斯两步移动搜寻法(2SFCA)的城市绿地可达性分析
yorov
GIS技巧算法
【2SFCA的基本思路,可以略过】对每个供给点j,搜索所有在j搜寻半径(d0)范围内的需求点(k),计算供需比Rj;对每个需求点i,搜索所有在i搜寻半径(d0)范围内的供【数据】成都市城区绿地数据、各街道小区数据、路网数据OSM【那再来理解一下高斯两步移动搜索法】对于最初的两步移动模型相当于二分,而高斯型相当于是缓慢下降—急速下降—趋于平缓的状态。很像上次莫兰指数里说的空间关系概念化。第一步,对于
- 反向传播神经网络极简入门
自信哥
单个神经元神经网络是多个“神经元”(感知机)的带权级联,神经网络算法可以提供非线性的复杂模型,它有两个参数:权值矩阵{Wl}和偏置向量{bl},不同于感知机的单一向量形式,{Wl}是复数个矩阵,{bl}是复数个向量,其中的元素分别属于单个层,而每个层的组成单元,就是神经元。神经元神经网络是由多个“神经元”(感知机)组成的,每个神经元图示如下:这其实就是一个单层感知机,其输入是由和+1组成的向量,其
- Java NIO 模型笔记
笑衬人心。
JAVA学习笔记javanio笔记
目录JavaNIO概述JavaBIOvsNIONIO三大核心组件Channel(通道)Buffer(缓冲区)Selector(选择器)Channel详解Buffer详解Selector详解NIO工作流程图示例代码讲解NIO模型的优缺点NIO与Netty简介总结JavaNIO概述JavaNIO(NewI/O)是从Java1.4开始引入的一套新的I/OAPI。主要用于构建高性能、高并发的网络通信程序。
- 阿里云瑶池数据库 Data Agent for Meta 正式发布,让 AI 更懂你的业务!
数据库观点资讯人工智能
背景随着生成式人工智能(GenerativeAI)从概念验证迈向规模化商业落地,AIAgent已成为企业核心业务流程的重要组成部分。然而,当模型调用日益便捷时,核心痛点已不再是模型本身,而是集中在一个关键要素上:数据。AIAgent的落地瓶颈已从技术能力转向高质量、高相关性、安全合规的数据供给。企业面临的核心挑战在于:数据孤岛导致知识库分散,通用大模型难以理解专业业务传统数据管理依赖人工开发维护,
- 超轻量级中文OCR项目使用教程
甄墨疆
超轻量级中文OCR项目使用教程chineseocr_lite超轻量级中文ocr,支持竖排文字识别,支持ncnn、mnn、tnn推理(dbnet(1.8M)+crnn(2.5M)+anglenet(378KB))总模型仅4.7M项目地址:https://gitcode.com/gh_mirrors/ch/chineseocr_lite1.项目介绍本项目是一个超轻量级的中文OCR(OpticalCha
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 善用关系网络:开源AI大模型、AI智能名片与S2B2C商城小程序赋能下的成功新路径
摘要:本文聚焦于关系在个人成功中的关键作用,指出关系即财富,善用关系、拓展人脉是成功的重要途径。在此基础上,引入开源AI大模型、AI智能名片以及S2B2C商城小程序等新兴技术工具,探讨它们如何助力个体在复杂的关系网络中更高效地挖掘和利用资源,提升处理关系的能力,从而为事业成功开拓新道路,揭示这些技术元素在当代成功路径中的创新应用与重要意义。关键词:关系网络;开源AI大模型;AI智能名片;S2B2C
- 学Simulink——整流器场景:基于Simulink的单相全桥可控硅整流器仿真建模
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulinkmatlab
目录手把手教你学Simulink——整流器场景:基于Simulink的单相全桥可控硅整流器仿真建模一、背景介绍二、系统结构设计三、建模过程第一步:创建新Simulink项目第二步:添加主要模块1.交流电源2.单相全桥可控硅整流器3.LC滤波器4.负载模拟5.触发脉冲生成模块6.测量模块第三步:搭建主电路拓扑第四步:搭建触发脉冲生成逻辑1.设计触发脉冲逻辑2.集成至Simulink模型四、参数设置五
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj