安卓进阶(3)之Handler/Looper/MessageQueue源码分析以及原理理解

前言

安卓系统是消息驱动的,所以深刻了解Handler整个消息分发机制,对于我们了解安卓系统,是一个必不可少的知识点。整个过程中,我们需要重点关注的类是:

1. Handler
2. Looper
3. MessageQueue
4. Meesage
5. ThreadLocal
6. Thread

这几个类之间的联系:Handler发送消息和接收消息都是通过Message,而基于链表的Message是由MessageQueue管理的,Looper用于阻塞和唤醒线程以便处理Message,为确保每个线程中顶多只有一个Looper对象,Android使用ThreadLocal来管理Looper,ThreadLocal并不是Thread的子类,它只是用ThreadLocal.ThreadLocalMap来存储Looper,最终Looper对象被存储在Thread对象中的threadLocals变量中。

本博客所分析的handler消息分发机制是基于andorid-28这个sdk来的,之所以要强调,是因为我发现ThreadLocal这个类,在android-23和android-28中不太一样,android-23中用来存储数据的类是ThreadLocal.Value,而android-28中是ThreadLocal.ThreadLocalMap,看了两者代码,其实差不多。不知道其他类有没有其他的区别,这里特此强调一下。

Handler原理

基本使用

先来看看我们使用handler最常用的用法,一般在子线程做耗时操作,然后用handler来通知主线程进行UI更新啥的:

Handler handler = new Handler(){
    @Override
    public void handleMessage(Message msg) {
        switch (msg.what){
            case 1:
                Log.d("test","接收到消息了。。");
                break;
        }
    }
};

private void operate(){

    new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                Log.d("test", "模拟耗时操作...");
                Thread.sleep(5000);
                Log.d("test", "子线程耗时操作结束,准备通知主线程...");
                handler.sendEmptyMessageDelayed(1, 5 * 1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }).start();
}

打印的log如下:

09-16 13:55:14.923 24522-24756/com.rxjavatest D/test: 模拟耗时操作...
09-16 13:55:19.923 24522-24756/com.rxjavatest D/test: 子线程耗时操作结束,准备通知主线程...
09-16 13:55:24.929 24522-24522/com.rxjavatest D/test: 接收到消息了。。

消息发送机制

接下来,我们分析handler.sendEmptyMessageDelayed()到底干了什么:

public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }

可以看到,虽然我们没传Message对象进去,但是sendEmptyMessageDelayed()方法里面会通过Message.obtain()获取一个复用的Message对象,然后将延时时间赋值到此msg对象中。刚开始我也不理解这里为什么要有一个Message对象,后面看了MessageQueue才得知,handler发送消息是基于Message的,每个消息事件,必须得由Message对象来传递。
然后,一路顺藤摸瓜跟踪后面的几个方法:

public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

可以看到,关于发送消息的延时的时间计算,它是由我们传递进去的delayMillis,加上SystemClock.uptimeMillis(),SystemClock.uptimeMillis()获取的时间是从开机到当前所占用的时间,如果手机进入深度睡眠(比如关闭屏幕有可能进入深度睡眠),SystemClock.uptimeMillis()获取的时间又是从0开始的了。大家可以试一下,用SystemClock.uptimeMillis()获取的时间,一般是小于手机设置中看到的开机时间的。
然后,继续往下看:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

这里就将消息加入到了MessageQueue的enqueueMessage()里面。handler发送消息暂告一段落,后面分析MessageQueue再往下细说。

消息回调机制

咱回过头来看看handler中的handleMessage()是如何回调的。handler的回调支持两种匿名内部类的写法,第一种是继承Handler的,第二种是实现Handler.Callback接口的,很显然,第一种简洁多了:

new Handler(){
    @Override
    public void handleMessage(Message msg) {
    }
};

new Handler(new Handler.Callback() {
    @Override
    public boolean handleMessage(Message msg) {
        return false;
    }
});

public interface Callback {
    /**
     * @param msg A {@link android.os.Message Message} object
     * @return True if no further handling is desired
     */
    public boolean handleMessage(Message msg);
}

/**
 * Subclasses must implement this to receive messages.
 */
public void handleMessage(Message msg) {
}

两者都是在dispatchMessage()中处理的: :

public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

这里的msg.callback只有使用handler.post(Runnable r)时,才会对smg.callback赋值,目前只能是null,虽然Message中有一个setCallback(),但它是一个隐藏的方法,估计是还没设计好吧。else里面逻辑也很简单,如果callback对象不为空,走callback的回调,否则就走继承handler的回调。那么dispatchMessage()又是在哪里调用的呢:

try {
    msg.target.dispatchMessage(msg);
    dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
    if (traceTag != 0) {
        Trace.traceEnd(traceTag);
    }
}

上面这段代码是Looper.loop()中死循环里的,在Looper.loop()里,通过MessageQueue.next()阻塞,一有消息就获取到,并通过msg.target.dispatchMessage(msg)将消息回调给Handler所在线程的handleMessage(),这就是Handler的消息回调机制。

消息回收机制

我们接下来看看handler.removeCallbacksAndMessages()做了什么:

/**
* Remove any pending posts of callbacks and sent messages whose
* obj is token.  If token is null,
* all callbacks and messages will be removed.
*/
public final void removeCallbacksAndMessages(Object token) {
    mQueue.removeCallbacksAndMessages(this, token);
}

handler中删除所有回调和消息,最终还是删除MessageQueue中的回调和消息,当token为null时,表示删除所有。我们接着看MessageQueue中删除回调和消息是怎么做的:

void removeCallbacksAndMessages(Handler h, Object object) {
    if (h == null) {
        return;
    }

    synchronized (this) {
        Message p = mMessages;

        // Remove all messages at front.
        while (p != null && p.target == h
                && (object == null || p.obj == object)) {
            Message n = p.next;
            mMessages = n;
            p.recycleUnchecked();
            p = n;
        }

        // Remove all messages after front.
        while (p != null) {
            Message n = p.next;
            if (n != null) {
                if (n.target == h && (object == null || n.obj == object)) {
                    Message nn = n.next;
                    n.recycleUnchecked();
                    p.next = nn;
                    continue;
                }
            }
            p = n;
        }
    }
}

**Message是基于链表结构的,所以通过Message.next()不断循环回收掉message对象。**看到这里各种实例对象的命名,n/nn/h/p,google工程师也偷懒了?。接下来再看下Message.recycleUnchecked()做了什么事情:

/**
 * Recycles a Message that may be in-use.
 * Used internally by the MessageQueue and Looper when disposing of queued Messages.
 */
void recycleUnchecked() {
    // Mark the message as in use while it remains in the recycled object pool.
    // Clear out all other details.
    flags = FLAG_IN_USE;
    what = 0;
    arg1 = 0;
    arg2 = 0;
    obj = null;
    replyTo = null;
    sendingUid = -1;
    when = 0;
    target = null;
    callback = null;
    data = null;

    synchronized (sPoolSync) {
        if (sPoolSize < MAX_POOL_SIZE) {
            next = sPool;
            sPool = this;
            sPoolSize++;
        }
    }
}

将Message对象中各种属性都置空,就表示清除了此Message对象~

handler.sendMessage()和handler.post()的区别

相同点:两者都是在当前线程事件处理完后,回调到new了Handler的那个线程里面,再去做逻辑处理。
不同点:handler.sendMessage()会将处理的这个message对象传过去,算是一个优化吧。

MessageQueue原理

消息队列中我们重点看两个方法,消息加入队列enqueueMessage()和取消息队列next()。

消息加入队列

boolean enqueueMessage(Message msg, long when) {
    ......
    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

大家重点看一下for (; ; ){}这个死循环。Message是一个链表数据的结构,当有一个新的msg对象到来,这个msg插入到原始msg里面会有两种可能,一种是插到最后面,一种是插到中间,而不管是哪一种,都是根据msg.when这个时间参数来的,也就是我们在handler中提到的SystemColock.upTimeMillis()+delaysTime这两个时间。

取出消息

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }
           ......
    }
}

可以看到,还是在for(; ; ){}这个死循环里,会根据msg.when去取mMessages这个公共变量值中时间刚好到了的msg对象。

Looper原理

Looper初现

Looper最开始出现的地方,是我们在new一个handler对象时:

public Handler(Callback callback, boolean async) {
    ......
    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread " + Thread.currentThread()
                    + " that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

在handler的构造方法中,会去获取handler所在线程的looper实例,以及looper实例中的消息队列实例。这里我们也能看到,如果mLooper==null,会抛异常。所以,我们在new一个handler时,需要先在当前线程调用Looper.prepare()初始化Looper。

为什么在主线程不需要我们调用Looper.prepare()初始化?

那有人就会问了,为啥我们在主线程不初始化Looper实例,就能随意new Handler呢?这是因为,在ActivityThread.java这个类中,已经调用了Looper.prepareMainLooper()了:

 public static void main(String[] args) {
        .......
        Looper.prepareMainLooper();
        ......
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
       .......
        Looper.loop();
        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

ActivityThread中的main()方法,是应用程序的主入口。从这里我们可以看到,深刻理解handlerlooper机制,对于理解以消息驱动的安卓系统来说,太特么重要了。首先初始化了主线程的Looper实例,然后通过Looper.loop()让主线程阻塞,最后一个抛异常的语句也说明了,主线程必须是阻塞的,否则就会抛异常。
所以,如果在主线程调用以下方法,妥妥地让你crash:

Looper.getMainLooper().quitSafely();

子线程使用Handler和Looper

有时候,我们想在子线程使用Handler进行消息分发,使用情况如下:

new Thread(
    new Runnable() {
        @Override
        public void run() {

            Looper.prepare();
            Handler mHandler = new Handler();
            Looper.loop();
        }
    }
).start();

当然了,如果我们在子线程中使用了handler,当退出子线程时,我们必须手动调用Looper.myLooper().quitSafely();或者Looper.myLooper().quit();否则子线程就会由于Looper一直处于阻塞状态,而导致内存泄漏问题。

Looper阻塞和唤醒原理

上面一直在说阻塞,和handler接收消息,那阻塞和唤醒的原理又是什么样的呢?我们来看下Looper.loop():

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;
    ......
    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }
        ......
        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
        final long dispatchEnd;
        try {
            msg.target.dispatchMessage(msg);
            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        ......
        msg.recycleUnchecked();
    }
}

for(; ; ){}这个死循环里,其实导致线程阻塞的,是MessageQueue对象中的next(),当取出了消息,就会通过msg.target.dispatchMessage(msg)
将消息分发出去,最终走到handleMessage(msg)。接下来再看看MessageQueue中的next()方法:

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
	......
}

for(; ; ){}这个死循环当中,主要有两点会进入阻塞状态,一是当消息队列中没有消息时,它会使线程进入等待状态;二是消息队列中有消息,但是消息指定了执行的时间,而现在还没有到这个时间,线程也会进入等待状态。而nativePollOnce()是一个native方法,它跟nativeWake()相对应使用,一个用于阻塞线程,一个用于唤醒线程,而它们底层的通信机制,其实是属于linux通信中的管道通信机制。而管道通信的特点是:进程试图读一个空管道时,在数据写入管道前,进程将一直阻塞,进程再试图写管道,在其它进程从管道中读走数据之前,写进程将一直阻塞。MessageQueue的插入消息和取出消息,分别对应管道通信的写数据和读数据。

ThreadLocal原理以及它在Looper中的应用

ThreadLocal翻译过来叫“本地线程”,其实它并不继承于Thread,它的作用,是为了保证一个线程,最多只能有一个类的实例对象。使用场景的话,就是在多线程的环境中,我们为了保证每一个线程最多只能有一个类的实例对象,这时候用ThreadLocal来保存此对象,是再适合不过的了。在安卓中,handler消息驱动机制规定每个线程只能有一个Looper来管理消息的阻塞和唤醒,所以,google工程师们就用了ThreadLocal来管理Looper。

那ThreadLocal存储的原理又是怎样的呢?首先,我们来看看Looper类中的的一个重要的对象:

// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal sThreadLocal = new ThreadLocal();

由此可以看到,sThreadLocal对象不属于Looper类,而属于静态静态方法区。在实例化Looper对象前,会对当前线程中是否有Looper做一个异常判断:

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

sThreadLocal.get()获取的就是当前线程的looper对象,如果我们在当前线程调用过Looper.prepare()方法了,再次调用时,sThreadLocal.get()不为空,就会抛异常。这里的sThreadLocal.get()sThreadLocal.set(),就是ThreadLocal最重要的两个方法了。

ThreadLocal设置Looper

我们首先看看sThreadLocal.set()干了什么:

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

我们的Looper对象,是保存在ThreadLocalMap中,而Thread类中有一个threadLocals变量来放置ThreadLocalMap对象,所以,我们的Looper对象,以当前线程对象tkey,以当前线程的looper对象为value

从ThreadLocal取出Looper

我们在调用Looper.myLooper()时,会去取当前线程的Looper对象:

 public static @Nullable Looper myLooper() {
   return sThreadLocal.get();
}

那又是如何获取的呢:

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

根据当前线程,去获取当前线程中的ThreadLocalMap对象,那么问题来了,作为保存数据的ThreadLocalMap类,它的数据结构又是什么样的呢?

static class Entry extends WeakReference> {
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal k, Object v) {
        super(k);
        value = v;
    }
}

从这里看到,threadLocalMap是仿HashMap以键值对的方式存储数据的,key被保存在弱引用中,value被保存在Object对象中。这里我查资料查了蛮久,不清楚为什么要将ThreadLocal对象以弱引用的方式保存,而不是直接用强引用?有了解的朋友麻烦多多留言,谢谢了!

参考文章:
SystemClock.uptimeMillis()理解
Android 中的Looper如何实现阻塞与唤醒的
java new 接口?匿名内部类给你答案
Android Handler机制10之Native的实现
Android中的Looper与epoll
Linux下的进程通信方式: 管道通信详解
深入解析 ThreadLocal 和 ThreadLocalMap
Java四种引用包括强引用,软引用,弱引用,虚引用

你可能感兴趣的:(安卓进阶,安卓进阶系列---罗小辉)