PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight

论文提出从IoU指标延伸来的PIoU损失函数,能够有效地提高倾斜目标检测场景下的旋转角度预测和IoU效果,对anchor-based方法和anchor-free方法均适用。另外论文提供了Retail50K数据集,能够很好地用于评估倾斜目标检测算法的性能

来源:晓飞的算法工程笔记 公众号

论文: PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第1张图片

  • 论文地址:https://arxiv.org/abs/2007.09584
  • 论文代码:https://github.com/clobotics/piou

Introduction


  当前的目标检测方法由于BB(bounding boxes)的特性,对倾斜和密集物体的检测存在一定的局限性。为了解决这个问题,研究者扩展出了带旋转参数的OBB(oriented bounding boxes),即从BB($c_x,c_y,w,h$)扩展为OBB($c_x,c_y,w,h,\theta$),其中$\theta$旋转角度,这样OBB就能更紧凑地包围目标,可以更好地检测旋转和密集的物体。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第2张图片

  目前的OBB-based方法大多数在anchor-based架构上采用距离损失来优化上述的5个参数,并且在航空图片的目标检测上已经有一些应用。但其检测性能在更复杂的场景中依然存在局限性,主要原因在于距离损失更多地是优化旋转角度误差,而不是优化全局IoU,特别是对长条形物体很不敏感。如图a所示,两个IoU相差很大的情景下,距离损失的结果却是一样的。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第3张图片

  为了解决这个问题,论文提出PIoU(Pixels-IOU)损失来同时提高旋转角度和IoU的准确率。如图b所示,PIoU损失能直接反映物体间的IoU,但由于OBB间的相交区域可能是多边形,OBB的IoU比BB的IoU要难算得多,所以PIoU损失以逐像素判断的方式进行IoU计算并且是连续可微的。另外论文还提供了包含高长宽比倾斜目标的检测数据集Retail50K,方便OBB-based检测算法的研究。
  论文的贡献如下:

  • 提出新的损失函数PIoU损失,能够提升倾斜目标的检测效果。
  • 提供新的数据集Retail50K,可以更好的进行OBB-based算法的评估。
  • 通过实验证明PIoU损失的有效性,能够运用于anchor-based和anchor-free方法。

Pixels-IoU (PIoU) Loss


  对于OBB $b$($c_x, c_y, w,h,\theta$),理想的损失函数能够引导网络最大化IoU,降低$b$的错误率。为了到达这个目的,需要准确且高效地计算OBB间的IoU,论文采用了像素计数的方式来计算IoU。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第4张图片

  对于点$p_{ij}$和OBB $b$,根据其到中线的距离$dh_{i,j}$和中线交点到中点的距离$dw_{i,j}$来判断点是否在OBB内:

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第5张图片

  定义$B_{b,b{'}}$为包围$b$和$b{'}$的最小正方形,可以通过判断$B_{b,b{'}}$中的所有像素来计算$b$和$b{'}$间的交集区域和并集区域:

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第6张图片

  最后通过$S_{b\cap b^{'}}$除以$S_{b\cup b^{'}}$计算IoU,但公式1并不是连续可微函数,导致不能进行反向传播训练。为了解决这个问题,将公式1转换为两个核的乘积$F(p_{i,j}|b)$:

  其中$k$用于控制对目标像素$p_{i,j}$的敏感程度,由于公式9使用了相对位置信息(图a的点距离和三角形的角度),所以$S_{b\cap b^{'}}$和$S_{b\cup b^{'}}$均是对OBB的旋转角度和大小敏感的。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第7张图片

  如图b所示,$F(p_{i,j}|b)$是连续可微的,且与公式1类似。当$p_{i,j}$在$b$内时,$F(p_{i,j}|b)$接近于1,反之则接近于0。为此,$b$和$b^{'}$的交并集区域计算变为:

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第8张图片

  为了降低公式11的计算量,简化为:

  基于公式10和公式12,PIoU的计算为:

  定义$M$为所有正样本对,PIoU损失的计算为:

  PIoU损失也可用于无交集的OBB,因为PIoU始终大于零,梯度依然可以计算,另外PIoU损失也可以用于正常的BB场景中。

Retail50K Dataset


PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第9张图片

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第10张图片

  之前的大多数OBB数据集都是航空图片,少部分数据集对MSCOCO等数据集进行重新标注。据统计,航空图片数据集中大多数OBB的长宽比都在1:4内,而主流数据集则集中在1:1,不能够很好地评价OBB-based方法的性能。为此,论文提供了Retail50K数据集,由47000张不同的超市图片构成,标注对象为货架的层架边。数据集包含复杂的背景和高长宽比目标,并且具有实际使用意义。

Experiments


PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第11张图片

  不同$k$下对比实验。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第12张图片

  对比其它损失函数在OBB场景下的性能。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第13张图片

  对比其它损失函数在BB场景下的性能。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第14张图片

  Retail50K数据集上的性能对比。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第15张图片

  HRSC2016数据上的性能对比。

PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight_第16张图片

  DOTA数据上的性能对比。

  结果可视化对比。

Conclustion


  论文提出从IoU指标延伸来的PIoU损失函数,能够有效地提高倾斜目标检测场景下的旋转角度预测和IoU效果,对anchor-based方法和anchor-free方法均适用。从结果来看,PIoU损失的效果还是十分明显的。另外论文提供了Retail50K数据集,能够很好地用于评估倾斜目标检测算法的性能。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

你可能感兴趣的:(PIoU Loss:倾斜目标检测专用损失函数,公开超难倾斜目标数据集Retail50K | ECCV 2020 Spotlight)