- 【深度学习】Unet的基础介绍
牧歌悠悠
深度学习人工智能算法深度学习人工智能U-net
U-Net是一种用于图像分割的深度学习模型,特别适合医学影像和其他需要分割细节的任务。如图:Unet论文原文为什么叫U-Net?U-Net的结构像字母“U”,所以得名。它的结构由两个主要部分组成:下采样(编码器):图像逐渐被缩小并且提取特征。上采样(解码器):逐渐恢复图像的尺寸,并通过“跳跃连接”将高分辨率的特征与低分辨率的特征结合,以保持细节。网络结构U-Net通常包括以下几部分:(1)下采样(
- OpenCV机器学习(10)训练数据的一个核心类cv::ml::TrainData
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::TrainData类是OpenCV机器学习模块中用于表示训练数据的一个核心类。它封装了样本数据、响应(标签)、样本权重等信息,并提供了多种方法来创建和操作这些数据,以适应不同的机器学习算法需求。主要功能数据准备:允许你从原始数据创建训练数据对象。支
- AI 驱动的自动化测试:从代码到报告的全面解读
测试者家园
人工智能软件测试质量效能测试策略自动化测试测试报告测试用例
在软件开发的生命周期中,测试一直是确保软件质量的关键环节。然而,随着开发规模的日益庞大,传统的手动测试和简单的自动化脚本已经无法满足高效、快速和高质量的需求。随着人工智能(AI)的兴起,尤其是在深度学习、自然语言处理(NLP)和智能决策算法方面的突破,AI驱动的自动化测试正逐渐成为现代软件开发中的核心组成部分。从自动生成测试用例、智能缺陷预测、到自动化报告生成,AI技术的应用为软件测试带来了革命性
- 科技快讯 | 京东为外卖骑手缴纳五险一金;全3D打印电喷雾发动机问世;小红书:3个月处置超300万违规账号
最新科技快讯
科技人工智能大数据
京东为外卖骑手缴纳五险一金2月19日,京东宣布,自2025年3月1日起,将逐步为京东外卖全职骑手缴纳五险一金,为兼职骑手提供意外险和健康医疗险。继给快递小哥缴纳五险一金后,京东再次成为首个为外卖骑手缴纳五险一金的平台。京东外卖自2月11日起正式启动“品质堂食餐饮商家”招募,对2025年5月1日前入驻的商家全年免佣金。深大推出DeepSeek人工智能通识课,本学期可选课学习深圳大学与腾讯云合作推出基
- 机器学习(四) 本文(2万字) | 梯度下降GD原理 | Python复现 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测pythonpytorch
第四章梯度下降一引入梯度二从一元到多元2.1一元函数2.1.1引入梯度下降2.1.2学习率2.1.3继续更新迭代2.2二元函数2.3多元函数三多种梯度方法3.1批量梯度下降(BatchGradientDescent,BGD)3.1.1对目标函数求偏导3.1.2每次迭代对参数进行更新3.1.3优缺点3.2随机梯度下降(StochasticGradientDescent,SGD)3.2.1对目标函数求
- 机器学习(一) 本文(3万字) | 机器学习概述 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测vscodepytorchpython
推荐阅读,点击查看文章目录1.统计学习(机器学习)1.1特点1.2对象1.3目的1.4方法1.5步骤2.基本分类2.1监督学习2.1.1输入空间、特征空间和输出空间2.1.2概率分布2.1.3假设空间2.1.4问题的形式化2.2无监督学习2.3强化学习2.4半监督学习与主动学习3.基于模型分类4.基于技巧分类4.1贝叶斯学习4.2核方法5.统计学习三要素5.1模型5.2策略5.2.1损失函数与风险
- 智能汽车安全实战:车联网威胁检测从入门到精通(含CAN总线/OTA/深度学习完整代码实现)
Coderabo
DeepSeekR1模型企业级应用汽车安全深度学习
车联网安全威胁检测实战:从CAN总线到OTA的全链路攻防解析(附完整Python代码)一、车联网安全威胁现状与挑战随着智能网联汽车渗透率突破60%,车端ECU数量超过150个,车载通信接口增加至8种以上,攻击面呈现指数级增长趋势。2023年某知名车企曝出的OTA升级漏洞导致50万辆汽车面临远程控制风险,凸显车联网安全检测的紧迫性。二、车联网安全检测技术框架2.1威胁检测架构设计classVehic
- 机器学习杂记
被自己蠢哭了
深度学习机器学习
过拟合处理方法:早停正则化dropout数据增广避免局部极小值方法:以不同的初始值来训练网络,最终选取最小的。使用模拟退火技术。模拟退火在每一步都以一定的概率接受比当前解更差的结果,从而有助于跳出局部极小。在每一步迭代过程中,接受次优解的概率要随着时间的推移而逐渐降低,从而保证算法稳定。使用随机梯度下降。与标准梯度下降精确计算梯度不同,随机梯度下降算法在计算梯度时加入了随机因素。于是,即使陷入局部
- 南凌科技接入deepseek大模型,提升云网智安服务能力
NOVAnet2023
科技
南凌科技自成立以来,始终秉持创新驱动的理念,积极探索并运用新兴的人工智能技术,赋能公司服务能力和运营效率提升。2024年,南凌科技便已接入各类大模型,包含智谱、通义千问等大模型。在2024年10月的“AI+安全”研讨大会上,南凌科技CTO鲁子奕博士就已向客户、媒体等展示了南凌科技运用AI大模型进行数据处理、客服问答等场景。如今,DeepSeek以其开源特性崭露头角,不仅展现出高度的灵活性与可定制性
- 58同城深度学习推理平台:基于Istio的云原生网关实践解析
ITPUB-微风
云原生深度学习istio
在当今数字化时代,深度学习技术的快速发展为各行各业带来了革命性的变化。作为国内领先的分类信息网站,58同城一直致力于通过技术创新提升服务质量和用户体验。近期,58同城AILab推出了一项重要的技术革新——基于Istio的云原生网关深度学习推理平台。本文将从技术角度深入解析这一创新实践,探讨其架构设计、应用效果以及未来发展方向。一、深度学习推理平台的重要性深度学习推理平台在58同城的业务中扮演着至关
- DeepSeek赋能智慧文旅:新一代解决方案,重构文旅发展的底层逻辑
百家方案
解决方案DeepSeek智慧文旅
DeepSeek作为一款前沿的人工智能大模型,凭借其强大的多模态理解、知识推理和内容生成能力,正在重构文旅产业的发展逻辑,推动行业从传统的经验驱动向数据驱动、从人力密集型向智能协同型转变。一、智能服务重构:打造全域感知的智慧服务体系DeepSeek通过整合物联网、传感器、摄像头和智能设备,打破信息孤岛,实现多源数据的采集与共享。例如,故宫博物院利用自然语言处理技术,实现了128种语言的实时互译,极
- 内容中台重构智能服务:人工智能技术驱动精准决策
清风徐徐de来
其他
内容概要现代企业数字化转型进程中,内容中台与人工智能技术的深度融合正在重构智能服务的基础架构。通过整合自然语言处理、知识图谱构建与深度学习算法三大技术模块,该架构实现了从数据采集到决策输出的全链路智能化。在数据层,系统可对接CRM、ERP等企业软件,通过标准化接口完成多源异构数据的实时清洗与结构化处理,例如某金融科技平台利用动态知识图谱技术,将分散的客户行为数据与市场情报进行语义关联,形成可解释的
- 工业过程模拟:从理论到实践的 Python 实现
Echo_Wish
Python进阶python开发语言
工业过程模拟:从理论到实践的Python实现在现代工业中,过程模拟已成为优化生产流程、提升效率和降低成本的重要手段。作为一名人工智能和Python领域的自媒体创作者,今天我想和大家探讨如何使用Python实现工业过程模拟,并通过具体代码示例展示其实际应用。什么是工业过程模拟?工业过程模拟是指通过计算机模型对工业生产过程进行仿真和分析,以预测和优化生产流程。其主要目的是在不影响实际生产的情况下,通过
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- 深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现
代码编织匠人
python深度学习lstm
深度学习时间序列预测:LSTM算法构建PM2.5单变量模型及Python实现时间序列预测是指根据历史数据对未来的时间点进行预测,对于一些与时间相关的问题,例如气象、股票市场走势等,时间序列预测具有非常重要的应用价值。本文将介绍如何使用深度学习中的LSTM算法,构建针对空气质量(PM2.5)的时间序列单变量模型,并使用Python进行实现。数据准备首先,我们需要收集历史空气质量(PM2.5)数据,以
- 利用深度学习进行汇率预测:LSTM与Transformer模型的应用实践
人工智能_SYBH
深度学习lstmtransformer
第一部分:数据收集与准备1.1数据集介绍1.2数据准备第二部分:使用LSTM模型进行汇率预测2.1数据序列化2.2LSTM模型构建2.3模型训练与评估2.4结果可视化第三部分:使用Transformer模型进行汇率预测3.1数据序列化3.2Transformer模型构建3.3模型训练与评估3.4结果可视化结论引言外汇市场是一个充满波动性的金融市场,吸引了众多交易者和投资者。为了做出明智的决策,预测
- ModelScope竞品分析:在面对Hugging Face Hub和百度PaddleHub等竞品时
anneCoder
百度大模型人工智能语言模型机器学习
引言随着人工智能技术的飞速发展,模型即服务(MaaS)平台逐渐成为开发者构建和应用AI解决方案的重要工具。ModelScope,作为阿里巴巴达摩院推出的开源模型平台,自上线以来便以其丰富的模型资源、便捷的服务和开放的合作环境吸引了大量用户的关注。然而,在竞争激烈的市场中,ModelScope也面临着来自其他MaaS平台的挑战。本文将对ModelScope的竞品进行详细分析,旨在为读者提供一个全面而
- [深入探索USearch:快速高效的单文件向量搜索引擎]
stjklkjhgffxw
python
引言在数据科学和机器学习领域,最近出现了许多用于近似最近邻搜索(ApproximateNearestNeighbors,ANNS)的工具。尽管FAISS已经是一个非常流行的选择,USearch以其紧凑性和无与伦比的速度正迅速获得关注。USearch不仅仅是一个更小、更快的向量搜索引擎,它还提供了高兼容性和用户自定义指标的灵活性。本文将引导您了解如何安装和使用USearch,并对其与FAISS的主要
- 如何利用USearch实现快速向量搜索:更轻量、更高效的替代方案
sdfugyd
python
引言向量搜索在现代机器学习和信息检索中扮演着重要角色。无论是图像检索、文本相似度计算还是推荐系统,向量搜索都是核心技术之一。本文将介绍一个轻量级、高效的向量搜索引擎——USearch。这种引擎与FAISS在功能上相似,但在设计上更为精简,具备更高的兼容性。接下来,我们将详细讲解如何安装和使用USearch,并提供实用的代码示例。主要内容1.USearch与FAISS的对比USearch的基础功能与
- 使用shell脚本运行python程序
GiantGo
#Pythonpython开发语言
在训练深度学习模型时,为了解放生产力,避免手动调参等,一般写成shell脚本的形式,执行一次shell就可以把所有的python程序给运行完毕。例如,我需要探究batchsize的影响,一般新手入门可能这样做:设置batchsize=8,运行一次main.py程序。设置batchsize=16,运行一次main.py程序。设置batchsize=32,运行一次main.py程序。设置batchsi
- 提升信息检索准确性和效率的搜索技巧
雅俗共赏100
笔记搜索引擎
一、基础技巧精准关键词避免长句子,提取核心关键词(如用“光合作用步骤”代替“请告诉我光合作用的具体过程”)。同义词替换:尝试不同表达(如“AI发展史”vs“人工智能历史”)。排除干扰词使用减号-排除无关内容(例:苹果-手机排除科技公司结果)。精确匹配用英文引号""搜索完整短语(例:"量子力学基础教程")。二、高级搜索指令(以Google为例)限定网站site:域名关键词(例:site:zhihu.
- FaceSwap——人脸的自动交换或替换
爱研究的小牛
AIGC——图像AIGC人工智能深度学习
一、FaceSwap介绍FaceSwap是一款开源的深度学习应用程序,旨在实现人脸的自动交换或替换。二、FaceSwap的核心功能人脸交换(FaceSwapping):FaceSwap的主要功能是将一张人脸从源图像或视频中提取出来,然后将其应用到目标图像或视频中。该功能适用于静态图片和动态视频处理。人脸自动检测与对齐(FaceDetectionandAlignment):在进行人脸交换之前,Fac
- Deepseek整合SpringAI
java技术小馆
javaspringcloud
在现代应用开发中,问答系统是一个常见的需求,尤其是在客服、教育和技术支持领域。本文将介绍如何使用SpringBoot、Deepseek和SpringAI构建一个简单的问答系统,并通过Postman调用API接口实现问答功能。通过本文,你将学习如何整合这些技术,快速实现一个高效的问答系统。1.技术栈介绍SpringBoot:用于快速构建Java后端服务。Deepseek:高性能的深度学习推理框架,用
- 机器学习:十大算法实现汇总
golemon.
ML机器学习算法人工智能
机器学习十大算法代码实现:使用numpy、pandas,不调用机器学习相关库。已将代码和相关文档上传到了github:golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com)一元线性回归:机器学习:一元线性回归_1元线性回归的6种基本公式-CSDN博客逻辑回归:机器学习:逻辑回归-CSDN博客决策树:机器学习:决策树-CSDN博
- 马斯克-全球最大算力集群-grok3效果任何
数据分析能量站
机器学习人工智能
就在刚刚,科技界巨头埃隆・马斯克正式揭晓了x.AI旗下的最新力作——Grok3。一经发布,Grok3便凭借其卓越表现,被赞誉为全球范围内最具智慧与力量的人工智能。(有待继续观察)作为x.AI精心打造的新型聊天机器人,Grok3展现出了令人惊叹的推理天赋,面对复杂问题时,能够凭借严密逻辑抽丝剥茧,给出精准解答。不仅如此,它还配备了如DeepSearch(深度搜索)这般的前沿功能,让信息获取与知识挖掘
- 人工智能专业毕业设计题目精选:推荐合集
HaiLang_IT
毕业设计选题计算机视觉人工智能目标检测
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- 跨语言语义理解与生成:多语言预训练方法及一致性优化策略
网罗开发
AI大模型人工智能深度学习负载均衡
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- langchain系列 - FewShotPromptTemplate 少量示例
码--到成功
大语言模型langchain
导读环境:OpenEuler、Windows11、WSL2、Python3.12.3langchain0.3背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain时间:20250220说明:技术梳理,针对FewShotPromptTemplate专门来写一篇博客概念说明few-shot最初来源于机器学习的概念,还有one-shot、zero-shot概念,概念如下:机器学习
- AI赋能下的2025商业新契机:AI无人自动直播引领财富增长
V__17671155793
人工智能pythonchatgptgpt-3gpt
AI赋能下的2025商业新契机:AI无人自动直播引领财富增长!在科技飞速发展的时代,每一次重大的技术突破都有可能重塑商业格局,创造全新的财富机遇。如今,随着人工智能技术的深度应用,AI无人自动直播正成为2025年最具潜力的造富新赛道,为广大商家提供了前所未有的发展契机,助力其在激烈的市场竞争中展翅腾飞。一、传统直播困境与AI无人自动直播的破局之道回顾直播行业的发展历程,传统直播模式在经历了初期的爆
- 主要空间数据挖掘方法
CodeYoung7
总结归纳数据挖掘地理信息
文章出自:http://blog.csdn.net/shaoz/article/details/6847925张新长马林兵等,《地理信息系统数据库》[M],科学出版社,2005年2月第二章第二节空间数据空间数据挖掘是多学科和多种技术交叉综合的新领域,其挖掘方法以人工智能、专家系统、机器学习、数据库和统计等成熟技术为基础。下面介绍近年来出现的主要空间数据挖掘方法。1、空间分析方法利用GIS的各种空间
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包.
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email: ken.wug@gmail.com
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2.
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多