mapreduce读取parquet文件

1.添加parquet1.8.1 maven依赖

1.8.1

JDateTime 依赖  3.3.8


	org.apache.parquet
	parquet-hadoop
	${parquet.version}



	org.jodd
	jodd
	${jodd.version}

2.获取parquet文件的元数据信息(schema)

package mapreduce.job.decodeparquet;

import static org.apache.parquet.format.converter.ParquetMetadataConverter.NO_FILTER;

import java.io.IOException;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.parquet.hadoop.ParquetFileReader;
import org.apache.parquet.hadoop.metadata.ParquetMetadata;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.Type;
/**
 * 解析parquet文件
 * @author 15257
 *
 */
public class DecodeParquetApp {

	public static void main(String[] args) {
		
		Configuration conf = new Configuration();
		String filePath = "D:\\BONC\\Shanxi\\data\\parquet\\002186_0.0";
		try {
			ParquetMetadata parquetMetadata = ParquetFileReader.readFooter(conf, new Path(filePath), NO_FILTER);
			// 获取 parquet 格式文件的全部 schema
			MessageType schema = parquetMetadata.getFileMetaData().getSchema();
			System.out.println(schema.toString());
			List fields = schema.getFields();
			for (Type field : fields) {
				System.out.println(field.getName());
			}
		} catch (IllegalArgumentException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}
}

mapreduce读取parquet文件_第1张图片

mapreduce读取parquet文件_第2张图片

schema解释

message

固定声明,就像结构体中的struct一样。

hive_schema

message name,可以粗暴的理解为表名,因为里面都是field

optional,required,repeated

这是三种field的关键字,分别表示可选,必选,可重复选

可选和必选类似数据库中的nullable,可重复选是为了支持复杂的嵌套结构。

field类型

目前parquet支持int32,int64,int96(有些系统会把时间戳存成int96如老版hive),float,double,boolean,binary,fixed_len_byte_array。

参考类org.apache.parquet.schema.PrimitiveType.PrimitiveTypeName

UTF8

field的原始类型(Original Type),可以辅助field的type进行细粒度的类型判断。

参考类 org.apache.parquet.schema.OriginalType

group

嵌套结构声明,类似json对象

3.java读parquet文件Demo

package test.parquet;

import java.sql.Timestamp;
import java.util.Calendar;

import org.apache.hadoop.fs.Path;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.NanoTime;
import org.apache.parquet.hadoop.ParquetReader;
import org.apache.parquet.hadoop.example.GroupReadSupport;
import org.apache.parquet.io.api.Binary;

import jodd.datetime.JDateTime;

public class ParquetReadTest {

	public static final long NANOS_PER_SECOND = 1000000000;
	public static final long SECONDS_PER_MINUTE = 60;
	public static final long MINUTES_PER_HOUR = 60;

	public static void main(String[] args) throws Exception {
		parquetReader("D:\\BONC\\Shanxi\\data\\parquet\\002186_0.0");
	}

	private static void parquetReader(String inPath) throws Exception {
		GroupReadSupport readSupport = new GroupReadSupport();
		ParquetReader reader = ParquetReader.builder(readSupport, new Path(inPath)).build();
		Group line = null;
		while ((line = reader.read()) != null) {
			System.out.println(getTimestamp(line.getInt96("start_time", 0)));
			return;
		}
	}

	public static long getTimestamp(Binary time) {
		NanoTime nanoTime = NanoTime.fromBinary(time);
		int julianDay = nanoTime.getJulianDay();
		long timeOfDayNanos = nanoTime.getTimeOfDayNanos();
		JDateTime jDateTime = new JDateTime((double) julianDay);
		Calendar calendar = Calendar.getInstance();
		calendar.set(Calendar.YEAR, jDateTime.getYear());
		// java calender index starting at 1.
		calendar.set(Calendar.MONTH, jDateTime.getMonth() - 1);
		calendar.set(Calendar.DAY_OF_MONTH, jDateTime.getDay());
		long remainder = timeOfDayNanos;
		int hour = (int) (remainder / (NANOS_PER_SECOND * SECONDS_PER_MINUTE * MINUTES_PER_HOUR));
		remainder = remainder % (NANOS_PER_SECOND * SECONDS_PER_MINUTE * MINUTES_PER_HOUR);
		int minutes = (int) (remainder / (NANOS_PER_SECOND * SECONDS_PER_MINUTE));
		remainder = remainder % (NANOS_PER_SECOND * SECONDS_PER_MINUTE);
		int seconds = (int) (remainder / (NANOS_PER_SECOND));
		long nanos = remainder % NANOS_PER_SECOND;
		calendar.set(Calendar.HOUR_OF_DAY, hour);
		calendar.set(Calendar.MINUTE, minutes);
		calendar.set(Calendar.SECOND, seconds);
		Timestamp ts = new Timestamp(calendar.getTimeInMillis());
		ts.setNanos((int) nanos);
		return ts.getTime();
	}
}

解析结果
Binary{12 constant bytes, [-128, 81, 50, 42, -100, 13, 0, 0, -125, -125, 37, 0]}
NanoTime{julianDay=2458499, timeOfDayNanos=14964374000000}
2019-01-15 04:09:24.374
1547496564374

4.mapreduce解析parquet文件Demo

package com.bonc.AiMrLocate.job.parquetTest;

import java.io.IOException;
import java.util.Iterator;

import org.apache.commons.lang.ArrayUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.hadoop.ParquetInputFormat;
import org.apache.parquet.hadoop.api.DelegatingReadSupport;
import org.apache.parquet.hadoop.api.InitContext;
import org.apache.parquet.hadoop.api.ReadSupport;
import org.apache.parquet.hadoop.example.GroupReadSupport;
import org.apache.parquet.io.api.Binary;

import com.bonc.AiMrLocate.util.DateUtils;

public class ParquetRunner {
	
	public static class WordCountMap extends Mapper {
		protected void map(Void key, Group value, Mapper.Context context) throws IOException, InterruptedException {
			try {
				Binary start_time = value.getInt96("start_time", 0);
				long timestamp = DateUtils.getTimestamp(start_time);
				String imsi = value.getString("imsi",0);
				String mme_group_id = value.getString("mme_group_id",0);
				String mme_code = value.getString("mme_code",0);
				String ue_s1ap_id = value.getString("ue_s1ap_id",0);
				String src_eci = value.getString("src_eci",0);
				context.write(new LongWritable(1),new Text(timestamp+","+imsi+","+mme_group_id+","+mme_code+","+ue_s1ap_id+","+src_eci));
			} catch (Exception e) {
				return;
			}
		}
	}
	
	public static class WordCountReduce extends Reducer {
		public void reduce(LongWritable key, Iterable values, Context context) throws IOException, InterruptedException {
		    Iterator iterator = values.iterator();
		    while(iterator.hasNext()){
		        context.write(key,iterator.next());
		    }
		}
	}
	
	public static final class MyReadSupport extends DelegatingReadSupport {
		public MyReadSupport() {
		    super(new GroupReadSupport());
		}
		
		@Override
		public org.apache.parquet.hadoop.api.ReadSupport.ReadContext init(InitContext context) {
		    return super.init(context);
		}
	}
	
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		String readSchema = "";
		conf.set(ReadSupport.PARQUET_READ_SCHEMA, readSchema);
		 
        Job job = new Job(conf);
        job.setJarByClass(ParquetRunner.class);
        job.setJobName("parquet");

        String in = "D:\\Work\\MR定位\\山西\\数据字段说明及样例数据\\信令\\mme\\002186_0";
        String  out = "D:\\Work\\MR定位\\山西\\数据字段说明及样例数据\\信令\\mme\\output";
        
        job.setMapperClass(WordCountMap.class);
        job.setInputFormatClass(ParquetInputFormat.class);
        ParquetInputFormat.setReadSupportClass(job, MyReadSupport.class);
        ParquetInputFormat.addInputPath(job, new Path(in));
        
        job.setReducerClass(WordCountReduce.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        FileOutputFormat.setOutputPath(job, new Path(out));
        
        //判断output文件夹是否存在,如果存在则删除
        Path path = new Path(out);
        //根据path找到这个文件
        FileSystem fileSystem = path.getFileSystem(conf);
        if (fileSystem.exists(path)) {
            fileSystem.delete(path, true);
            System.out.println(out+"已存在,删除");
        }

        job.waitForCompletion(true);
	}
}

 

 

 

你可能感兴趣的:(hadoop,parquet)