从事计算机视觉领域的工作或者研究,必不可少的一件事情就是读论文,目前论文这么多,对于新手朋友们来说,该如何进行选读呢?本次来汇总一下我们的论文推荐专栏,给大家推荐各个方向,超过100篇文章,大家可以点击文末的‘往期链接’进入相关链接获取详细介绍。
作者&编辑 | 言有三
1. 初入深度学习领域
当我们初入这一行的时候,需要对基本的理论有比较好的理解,为之后的学习打下基础,这里我们从模型到数据给大家推荐了一些必读的文章。
1.1 初入深度学习CV领域必读的几篇文章
[1] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1): 106-154.
[2] Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological cybernetics, 1980, 36(4): 193-202.
[3] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.
[5] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[6] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham, 2014: 818-833.
[7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[8] Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.
[9] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[10] Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Backpropagation: Theory, Architectures and Applications, 1995: 35-61.
[11] Ciresan D C, Meier U, Masci J, et al. Flexible, high performance convolutional neural networks for image classification[C]//Twenty-Second International Joint Conference on Artificial Intelligence. 2011.
1.2【每周CV论文推荐】 初学者必须精读的5篇深度学习优化相关文章
[1] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010: 249-256.
[2] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. 2011: 315-323.
[3] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
[4] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: The all convolutional net[J]. arXiv preprint arXiv:1412.6806, 2014.
[5] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.
1.3【每周CV论文推荐】 CV领域中数据增强相关的论文推荐
[1] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
[2] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[3] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[4] Zhang H, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.
[5] Cubuk E D, Zoph B, Mane D, et al. AutoAugment: Learning Augmentation Policies from Data.[J]. arXiv: Computer Vision and Pattern Recognition, 2018.
1.4 【每周CV论文推荐】 掌握残差网络必读的10多篇文章
[1] Schraudolph N. Accelerated gradient descent by factor-centering decomposition[J]. Technical report/IDSIA, 1998, 98.
[2] Raiko T, Valpola H, LeCun Y. Deep learning made easier by linear transformations in perceptrons[C]//Artificial intelligence and statistics. 2012: 924-932.
[3] Srivastava R K, Greff K, Schmidhuber J. Training very deep networks[C]//Advances in neural information processing systems. 2015: 2377-2385.
[4] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[5] Veit A, Wilber M J, Belongie S. Residual networks behave like ensembles of relatively shallow networks[C]//Advances in neural information processing systems. 2016: 550-558.
[6] Huang G, Sun Y, Liu Z, et al. Deep networks with stochastic depth[C]//European conference on computer vision. Springer, Cham, 2016: 646-661.
[7] Orhan A E, Pitkow X. Skip connections eliminate singularities[J]. arXiv preprint arXiv:1701.09175, 2017.
[8] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[C]//European conference on computer vision. Springer, Cham, 2016: 630-645.
[9] Zagoruyko S, Komodakis N. Wide residual networks[J]. arXiv preprint arXiv:1605.07146, 2016.
[10] Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
[11] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
[12] Yang Y, Zhong Z, Shen T, et al. Convolutional neural networks with alternately updated clique[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2413-2422.
1.5【每周CV论文推荐】 初学高效率CNN模型设计应该读的文章
[1] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[2] Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.
[3] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[4] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.
[5] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258..
[6] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[7] Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
[8] Shang W, Sohn K, Almeida D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//international conference on machine learning. 2016: 2217-2225.
[9] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
2. 深度学习CV基础领域
基于深度学习的发展是从一些基础领域开始的,包括图像分类,分割,检测,GAN等,所以我们肯定要学习相关的内容。
2.1【每周CV论文推荐】 初学目标检测必须要读的文章
[1] Sermanet P, Eigen D, Zhang X, et al. Overfeat: Integrated recognition, localization and detection using convolutional networks[J]. arXiv preprint arXiv:1312.6229, 2013.
[2] Li H, Lin Z, Shen X, et al. A convolutional neural network cascade for face detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 5325-5334.
[3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[4] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[5] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[6] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.
[7] Dai J, Li Y, He K, et al. R-fcn: Object detection via region-based fully convolutional networks[C]//Advances in neural information processing systems. 2016: 379-387.
[8] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
2.2【每周CV论文推荐】初学深度学习图像分割必须要读的文章
[1] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[2] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.
[3] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.
[4] Krähenbühl P, Koltun V. Efficient inference in fully connected crfs with gaussian edge potentials[C]//Advances in neural information processing systems. 2011: 109-117.
[5] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. arXiv preprint arXiv:1412.7062, 2014.
[6] Zheng S, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1529-1537.
[7] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[8] Liu W, Rabinovich A, Berg A C. Parsenet: Looking wider to see better[J]. arXiv preprint arXiv:1506.04579, 2015.
[9] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
2.3【每周CV论文推荐】 初学GAN必须要读的文章
[1] Ng A Y, Jordan M I. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[C]//Advances in neural information processing systems. 2002: 841-848.
[2] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
[3] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[4] Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[5] Chen X, Duan Y, Houthooft R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[C]//Advances in neural information processing systems. 2016: 2172-2180.
[6] Denton E L, Chintala S, Fergus R. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Advances in neural information processing systems. 2015: 1486-1494.
[7] Huang X, Li Y, Poursaeed O, et al. Stacked generative adversarial networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [8] Karras T, Aila T, Laine S, et al. Progressive growing of gans for improved quality, stability, and variation[J]. arXiv preprint arXiv:1710.10196, 2017.
2.4【每周CV论文】初学GAN图像风格化必须要读的文章
[1] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[2] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
[3] Liu M, Breuel T M, Kautz J, et al. Unsupervised Image-to-Image Translation Networks[C]. neural information processing systems, 2017: 700-708.
[4] Choi Y, Choi M, Kim M, et al. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8789-8797.
[5] Choi Y, Uh Y, Yoo J, et al. StarGAN v2: Diverse Image Synthesis for Multiple Domains[J]. arXiv: Computer Vision and Pattern Recognition, 2019.
[6] Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.
[7] Karras T, Laine S, Aittala M, et al. Analyzing and Improving the Image Quality of StyleGAN.[J]. arXiv: Computer Vision and Pattern Recognition, 2019.
[8] Li T, Qian R, Dong C, et al. BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversarial Network[C]. acm multimedia, 2018: 645-653.
[9] Kim J, Kim M, Kang H, et al. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation[C]. international conference on learning representations, 2020.
3. 人脸领域
计算机视觉里除了人脸图像,没有一个领域可以覆盖底层图像特征,目标检测与跟踪,图像分类和检索,图像滤波,图像分割,三维重建,风格迁移等方向,并且能够做到相互融合从而进行工业界落地,因此我们肯定要学习人脸图像。
3.1【每周CV论文推荐】 深度学习人脸检测入门必读文章
[1] Yang S, Luo P, Loy C C, et al. Faceness-net: Face detection through deep facial part responses[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(8): 1845-1859.
[2] Li H, Lin Z, Shen X, et al. A convolutional neural network cascade for face detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 5325-5334.
[3] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks[K. Zhang al., 2016
[4] Jiang H, Learned-Miller E. Face detection with the faster R-CNN[C]//2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017: 650-657.
[5] Wang H, Li Z, Ji X, et al. Face R-CNN[J]. 2017.
[6] Huang L, Yang Y, Deng Y, et al. Densebox: Unifying landmark localization with end to end object detection[J]. arXiv preprint arXiv:1509.04874, 2015.
3.2【每周CV论文推荐】 初学深度学习人脸关键点检测必读文章
[1] Sun Y, Wang X, Tang X. Deep convolutional network cascade for facial point detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 3476-3483.
[2] Zhang Z, Luo P, Loy C C, et al. Facial landmark detection by deep multi-task learning[C]//European conference on computer vision. Springer, Cham, 2014: 94-108.
[3] Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks[K. Zhang al., 2016
[4] Kowalski M, Naruniec J, Trzcinski T. Deep alignment network: A convolutional neural network for robust face alignment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 88-97.
[5] Wu W, Qian C, Yang S, et al. Look at boundary: A boundary-aware face alignment algorithm[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2129-2138.
[6] Jin X, Tan X. Face alignment in-the-wild: A survey[J]. Computer Vision and Image Understanding, 2017, 162: 1-22.
3.3 【每周CV论文推荐】 初学深度学习人脸识别和验证必读文章
[1] Taigman Y, Yang M, Ranzato M A, et al. Deepface: Closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1701-1708.
[2] Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1891-1898.
[3] Sun Y, Chen Y, Wang X, et al. Deep learning face representation by joint identification-verification[C]//Advances in neural information processing systems. 2014: 1988-1996.
[4] Sun Y, Wang X, Tang X. Deeply learned face representations are sparse, selective, and robust[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2892-2900.
[5] Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823.
[6] Parkhi, Omkar M., Andrea Vedaldi, and Andrew Zisserman. "Deep face recognition." bmvc. Vol. 1. No. 3. 2015.
[7] Wen Y, Zhang K, Li Z, et al. A discriminative feature learning approach for deep face recognition[C]//European conference on computer vision. Springer, Cham, 2016: 499-515.
[8] Zhang X, Fang Z, Wen Y, et al. Range loss for deep face recognition with long-tailed training data[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5409-5418.
[9] Wang J, Zhou F, Wen S, et al. Deep metric learning with angular loss[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2593-2601.
[10] Liu Y, Li H, Wang X. Rethinking feature discrimination and polymerization for large-scale recognition[J]. arXiv preprint arXiv:1710.00870, 2017.
3.4【每周CV论文推荐】 初学深度学习人脸属性分析必读的文章
[1] Rothe R, Timofte R, Van Gool L. Deep expectation of real and apparent age from a single image without facial landmarks[J]. International Journal of Computer Vision, 2018, 126(2-4): 144-157.
[2] Fabian Benitez-Quiroz C, Srinivasan R, Martinez A M. Emotionet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 5562-5570.
[3] Liang L, Lin L, Jin L, et al. SCUT-FBP5500: A diverse benchmark dataset for multi-paradigm facial beauty prediction[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1598-1603.
[4] Liu Z, Luo P, Wang X, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE international conference on computer vision. 2015: 3730-3738.
[5] Lee C H, Liu Z, Wu L, et al. MaskGAN: towards diverse and interactive facial image manipulation[J]. arXiv preprint arXiv:1907.11922, 2019.
[6] Zheng X, Guo Y, Huang H, et al. A Survey to Deep Facial Attribute Analysis[J]. arXiv preprint arXiv:1812.10265, 2018.
3.5 【每周CV论文推荐】 初学活体检测与伪造人脸检测必读的文章
[1] Yang J, Lei Z, Li S Z. Learn convolutional neural network for face anti-spoofing[J]. arXiv preprint arXiv:1408.5601, 2014.
[2] Atoum Y, Liu Y, Jourabloo A, et al. Face anti-spoofing using patch and depth-based CNNs[C]//2017 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2017: 319-328.
[3] Liu Y, Jourabloo A, Liu X. Learning deep models for face anti-spoofing: Binary or auxiliary supervision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 389-398.
[4] Jourabloo A, Liu Y, Liu X. Face de-spoofing: Anti-spoofing via noise modeling[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 290-306.
[5] Zhang S, Wang X, Liu A, et al. A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 919-928.
[6] Rössler A, Cozzolino D, Verdoliva L, et al. Faceforensics++: Learning to detect manipulated facial images[J]. arXiv preprint arXiv:1901.08971, 2019.
[7] Wang R, Ma L, Juefei-Xu F, et al. FakeSpotter: A Simple Baseline for Spotting AI-Synthesized Fake Faces[J]. arXiv preprint arXiv:1909.06122, 2019.
3.6【每周CV论文推荐】 初学深度学习单张图像三维人脸重建需要读的文章
[1] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces[C]//Siggraph. 1999, 99(1999): 187-194.
[2] Cao C, Weng Y, Zhou S, et al. Facewarehouse: A 3d facial expression database for visual computing[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 20(3): 413-425.
[3] Tuan Tran A, Hassner T, Masi I, et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5163-5172.
[4] Chang F J, Tuan Tran A, Hassner T, et al. Faceposenet: Making a case for landmark-free face alignment[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1599-1608.
[5] Chang F J, Tran A T, Hassner T, et al. ExpNet: Landmark-free, deep, 3D facial expressions[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018: 122-129.
[6] Jackson A S, Bulat A, Argyriou V, et al. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1031-1039.
[7] Feng Y, Wu F, Shao X, et al. Joint 3d face reconstruction and dense alignment with position map regression network[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 534-551.
[8] Tewari A, Zollhofer M, Kim H, et al. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1274-1283.
[9] Zheng X, Guo Y, Huang H, et al. A Survey to Deep Facial Attribute Analysis[J]. arXiv preprint arXiv:1812.10265, 2018.
3.7【每周CV论文推荐】 人脸识别剩下的难题:从遮挡,年龄,姿态,妆造到亲属关系,人脸攻击
[1] Wang J, Yuan Y, Yu G. Face attention network: An effective face detector for the occluded faces[J]. arXiv preprint arXiv:1711.07246, 2017.
[2] Yuan X, Park I K. Face De-occlusion using 3D Morphable Model and Generative Adversarial Network[J]. arXiv preprint arXiv:1904.06109, 2019.
[3] Sawant M M, Bhurchandi K M. Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging[J]. Artificial Intelligence Review, 2019, 52(2): 981-1008.
[4] Ding C, Tao D. A comprehensive survey on pose-invariant face recognition[J]. ACM Transactions on intelligent systems and technology (TIST), 2016, 7(3): 37.
[5] Li Y, Song L, Wu X, et al. Anti-Makeup: Learning a bi-level adversarial network for makeup-invariant face verification[C]//Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[6] Robinson J P, Shao M, Wu Y, et al. Families in the wild (fiw): Large-scale kinship image database and benchmarks[C]//Proceedings of the 24th ACM international conference on Multimedia. ACM, 2016: 242-246.
[7] Rössler A, Cozzolino D, Verdoliva L, et al. Faceforensics: A large-scale video dataset for forgery detection in human faces[J]. arXiv preprint arXiv:1803.09179, 2018.
3.8【每周CV论文推荐】换脸算法都有哪些经典的思路?
[1] Suwajanakorn S, Seitz S M, Kemelmacher-Shlizerman I. What makes tom hanks look like tom hanks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 3952-3960.
[2] Thies J, Zollhofer M, Stamminger M, et al. Face2face: Real-time face capture and reenactment of rgb videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2387-2395.
[3] https://github.com/hrastnik/FaceSwap
[4] Korshunova I, Shi W, Dambre J, et al. Fast face-swap using convolutional neural networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3677-3685.
[5] Jin X, Qi Y, Wu S. Cyclegan face-off[J]. arXiv preprint arXiv:1712.03451, 2017.
[6] Korshunov P, Marcel S. Deepfakes: a new threat to face recognition? assessment and detection[J]. arXiv preprint arXiv:1812.08685, 2018.
[7] https://github.com/deepfakes/faceswap
4.图像质量领域
图像质量领域是图像处理算法的起源,包含了很多方向,也是我们需要重点学习的内容。
4.1 【每周CV论文】深度学习图像降噪应该从阅读哪些文章开始
[1] Mao X, Shen C, Yang Y B. Image restoration using very deep convolutionalencoder-decoder networks with symmetric skip connections[C]//Advances in neuralinformation processing systems. 2016: 2802-2810.
[2] Zhang K, Zuo W, Chen Y, et al. Beyond a gaussian denoiser: Residual learningof deep cnn for image denoising[J]. IEEE Transactions on Image Processing, 2017,26(7): 3142-3155.
[3] Guo S, Yan Z, Zhang K, et al. Toward convolutional blind denoising of realphotographs[C]//Proceedings of the IEEE Conference on Computer Vision andPattern Recognition. 2019: 1712-1722.
[4] Chen J, Chen J, Chao H, et al. Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3155-3164.
[5] Lehtinen J, Munkberg J, Hasselgren J, et al. Noise2noise: Learning image restoration without clean data[J]. arXiv preprint arXiv:1803.04189, 2018.
[6] Lempitsky V, Vedaldi A, Ulyanov D, et al. Deep Image Prior[C]. computer vision and pattern recognition, 2018: 9446-9454.
[7] Krull A, Buchholz T, Jug F, et al. Noise2Void - Learning Denoising From Single Noisy Images[C]. computer vision and pattern recognition, 2019: 2129-2137.
[8] Batson J, Royer L. Noise2Self: Blind Denoising by Self-Supervision[J]. arXiv: Computer Vision and Pattern Recognition, 2019.
[9] Li S, Cao X, Araujo I B, et al. Single Image Deraining: A Comprehensive Benchmark Analysis[C]. computer vision and pattern recognition, 2019: 3838-3847.
4.2【每周CV论文】初学深度学习图像对比度增强应该要读的文章
[1] Chen Q, Xu J, Koltun V. Fast image processing with fully-convolutionalnetworks[C]//Proceedings of the IEEE International Conference on ComputerVision. 2017: 2497-2506.
[2] Talebi H, Milanfar P. Learned perceptual image enhancement[C]//2018 IEEEInternational Conference on Computational Photography (ICCP). IEEE, 2018: 1-13.
[3] Wei C, Wang W, Yang W, et al. Deep Retinex Decomposition for Low-Light Enhancement.[C]. british machine vision conference, 2018.
[4] Ignatov A, Kobyshev N, Timofte R, et al. DSLR-quality photos on mobiledevices with deep convolutional networks[C]//Proceedings of the IEEEInternational Conference on DSLR-quality photos on mobile Computer Vision.2017: 3277-3285.
[5] Gharbi M, Chen J, Barron J T, et al. Deep bilateral learning for real-timeimage enhancement[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 118.
[6] Hu Y, He H, Xu C, et al. Exposure: A white-box photo post-processing framework[J]. ACM Transactions on Graphics (TOG), 2018, 37(2): 26.
[7] Chen C, Chen Q, Xu J, et al. Learning to see in the dark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3291- 3300.
4.3【每周CV论文】初学深度学习图像超分辨应该要读的文章
[1] Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(2): 295-307.
[2] Shi W, Caballero J, Huszar F, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]. computer vision and pattern recognition, 2016: 1874-1883.
[3] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//European conference on computer vision. Springer, Cham, 2016: 694-711.
[4] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681-4690.
[5] Bulat A, Yang J, Tzimiropoulos G. To learn image super-resolution, use a gan to learn how to do image degradation first[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 185-200.
[6] Chen Y, Tai Y, Liu X, et al. FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors[C]. computer vision and pattern recognition, 2018: 2492-2501.
[7] Menon S, Damian A, Hu S, et al. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models[J]. arXiv: Computer Vision and Pattern Recognition, 2020.
4.4【每周CV论文】初学深度学习图像修复应该要读的文章
[1] Pathak D, Krahenbuhl P, Donahue J, et al. Context encoders: Feature learning by inpainting[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2536-2544.
[2] Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics (ToG), 2017, 36(4): 1-14.
[3] Yu J, Lin Z, Yang J, et al. Generative image inpainting with contextual attention[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5505-5514.
[4] Liu G, Reda F A, Shih K J, et al. Image inpainting for irregular holes using partial convolutions[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 85-100.
[5] Nazeri K, Ng E, Joseph T, et al. EdgeConnect: Structure Guided ImageInpainting using Edge Prediction[C]//Proceedings of the IEEE InternationalConference on Computer Vision Workshops. 2019: 0-0.
[6] Wan Z , Zhang B , Chen D , et al. Bringing Old Photos Back to Life[J]. 2020..
5.如何交流学习这些内容
5.1 论文下载
开始的时候我们将论文放在了git项目中,但是随着数量增加不合适再放到git中,大家可以自己下载,也可以在我们的知识星球中下载。
5.2 文章解读
各个方向的文章解读也在有三AI知识星球中,目前已经有超过300期。
有三AI知识星球的加入方式为扫描下方二维码,9月因为在全国各地做线下活动,所以文章解读更新会较少。
5.3 有三的书
另外一些方向也已经出版成书,比如人脸方向,模型方向,可以大家去我的三本书中阅读。
言有三新书来袭,业界首次深入全面讲解深度学习人脸图像算法
言有三新书来袭!业界首次深入全面讲解深度学习模型设计
言有三新书预售,不贵,有料
转载文章请后台联系
侵权必究
往期精选
【每周论文推荐】 初入深度学习CV领域必读的几篇文章
【每周CV论文推荐】 掌握残差网络必读的10多篇文章
【每周CV论文推荐】 初学者必须精读的5篇深度学习优化相关文章
【每周CV论文推荐】 CV领域中数据增强相关的论文推荐
【每周CV论文推荐】 初学高效率CNN模型设计应该读的文章
【每周CV论文推荐】 初学目标检测必须要读的文章
【每周CV论文推荐】 初学深度学习图像分割必须要读的文章
【每周CV论文推荐】 初学GAN必须要读的文章
【每周CV论文推荐】 深度学习人脸检测入门必读文章
【每周CV论文推荐】 初学深度学习人脸关键点检测必读文章
【每周CV论文推荐】 初学深度学习人脸识别和验证必读文章
【每周CV论文推荐】 初学深度学习人脸属性分析必读的文章
【每周CV论文推荐】 初学活体检测与伪造人脸检测必读的文章
【每周CV论文推荐】 初学深度学习单张图像三维人脸重建需要读的文章
【每周CV论文推荐】 人脸识别剩下的难题:从遮挡,年龄,姿态,妆造到亲属关系,人脸攻击
【每周CV论文推荐】换脸算法都有哪些经典的思路?
【每周CV论文】深度学习文本检测与识别入门必读文章
【每周CV论文】深度学习图像降噪应该从阅读哪些文章开始
【每周CV论文】初学GAN图像风格化必须要读的文章
【每周CV论文】初学深度学习图像超分辨应该要读的文章
【每周CV论文】初学深度学习图像对比度增强应该要读的文章
【每周CV论文】初学深度学习图像修复应该要读的文章
【每周CV论文】初学深度学习图像风格化要读的文章