世界坐标系到相机坐标系的转换

坐标系的转换

P e = T w e P w = [ X 1 w X 2 w X 3 w − X w ⋅ O w Y 1 w Y 2 w Y 3 w − Y w ⋅ O w Z 1 w Z 2 w Z 3 w − Z w ⋅ O w 0 0 0 1 ] P w = [ R w e − R w e O w 0 1 ] P w P^e=T^e_w P^w= \left[ \begin {matrix} X^w_1 & X^w_2 & X^w_3 & -X^w \cdot O^w \\ Y^w_1 & Y^w_2 & Y^w_3 & -Y^w \cdot O^w \\ Z^w_1 & Z^w_2 & Z^w_3 & -Z^w \cdot O^w \\ 0 & 0 & 0 & 1 \\ \end {matrix} \right] P^w= \left[ \begin {matrix} R^e_w & -R^e_wO^w \\ 0 & 1 \\ \end {matrix} \right]P^w Pe=TwePw=X1wY1wZ1w0X2wY2wZ2w0X3wY3wZ3w0XwOwYwOwZwOw1Pw=[Rwe0RweOw1]Pw

X w X^w Xw是相机系X轴基在世界系的向量,

Y w Y^w Yw是相机系Y轴基在世界系的向量,

Z w Z^w Zw是相机系Z轴基在世界系的向量,

O w O^w Ow是相机系原点在世界系的向量,

P w = [ R e w O w 0 1 ] P e P^w= \left[ \begin {matrix} R^w_e & O^w \\ 0 & 1 \\ \end {matrix} \right]P^e Pw=[Rew0Ow1]Pe

你可能感兴趣的:(人工智能,算法)