swiotlb技术是一种纯软件的地址映射技术,主要为寻址能力受限的DMA提供软件上的地址映射,听起来比较玄乎,实际上其原理非常简单。我们下面先来谈一下该技术提出的背景。
我们假设一个64位系统,其内存的基地址是0x80000000,内存大小是4G,则内存的物理地址范围是0x80000000-0x180000000,同时该系统中某个外设的DMA只能按32 bits地址寻址,即寻址范围为0-0xffffffff,如果恰好非给该外设DMA的内存地址超过了这个范围,该外设DMA实际无法使用该地址。那么怎么办呢?此时swiotlb就登上了舞台!
swiotlb维护了一块低地址的buffer,该buffer的大小可以由bootloader通过swiotlb参数传递给内核,也可以使用默认值,默认值是64M。
如果给DMA分配的物理地址(这里记做phyaddr1)超过了其寻址能力,那么swiotlb技术将从其buffer中分配同样大小的一块空间,给DMA使用,其物理地址记做phyaddr2,swiotlb会维护phyaddr1和phyaddr2的映射关系。
这里有两个问题比较关键:
第一个问题是:如何确保swiotlb维护的buffer在低地址呢?
这个问题很好回答,只要尽可能早地分配该buffer就可以了,只要分配的足够早,想要哪一块buffer还不是一句话的事!在ARM64平台上在函数mem_init的一开始,就调用swiotlb_init做swiotlb的初始化,swiotlb_init中就会分配所需要的buffer。
第二个问题是:一般来说先分配page,然后映射其物理地址(这里我们暂时认为是物理地址,其实是DMA地址),如果在映射物理地址的时候发现物理地址超过DMA的寻址能力,就会偷偷从buffer中申请一块等大小的内存,来替换掉原来内存地址,给DMA使用。但是此时物理page和DMA实际使用的物理地址不一致,也就是说DMA看到内存和CPU看到的内存实际上是两块内存,这两块内存没有任何关系。
以上分析除了最后一句之外,全部是正确的。这两个内存是有关系的,他们的关系就是swiotlb维护了一张io_tlb_orig_addr表,这张表维护了原始物理地址和swiotlb分配物理地址之间的映射关系。当DMA将数据写入swiotlb分配的物理地址后,一般会以中断的方式通知CPU,CPU在查看DMA写到内存的数据之前,需要先做一个sync,该sync操作就会触发swiotlb将数据拷贝到原始物理地址处,这样就保证了CPU能够看到正确的数据,不过显而易见,这种方法效率非常低下。
void __init
swiotlb_init(int verbose)
{
size_t default_size = IO_TLB_DEFAULT_SIZE;
unsigned char *vstart;
unsigned long bytes;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
/* Get IO TLB memory from the low pages */
vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
return;
if (io_tlb_start)
memblock_free_early(io_tlb_start,
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
pr_warn("Cannot allocate SWIOTLB buffer");
no_iotlb_memory = true;
}
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
{
void *v_overflow_buffer;
unsigned long i, bytes;
bytes = nslabs << IO_TLB_SHIFT;
io_tlb_nslabs = nslabs;
io_tlb_start = __pa(tlb);
io_tlb_end = io_tlb_start + bytes;
/*
* Get the overflow emergency buffer
*/
v_overflow_buffer = memblock_virt_alloc_low_nopanic(
PAGE_ALIGN(io_tlb_overflow),
PAGE_SIZE);
if (!v_overflow_buffer)
return -ENOMEM;
io_tlb_overflow_buffer = __pa(v_overflow_buffer);
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
io_tlb_list = memblock_virt_alloc(
PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
PAGE_SIZE);
io_tlb_orig_addr = memblock_virt_alloc(
PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
PAGE_SIZE);
for (i = 0; i < io_tlb_nslabs; i++) {
io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
}
io_tlb_index = 0;
if (verbose)
swiotlb_print_info();
return 0;
}
dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t map, phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = phys_to_dma(dev, phys);
BUG_ON(dir == DMA_NONE);
/*
* If the address happens to be in the device's DMA window,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
return dev_addr;
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
/* Oh well, have to allocate and map a bounce buffer. */
map = map_single(dev, phys, size, dir);
if (map == SWIOTLB_MAP_ERROR) {
swiotlb_full(dev, size, dir, 1);
return phys_to_dma(dev, io_tlb_overflow_buffer);
}
dev_addr = phys_to_dma(dev, map);
/* Ensure that the address returned is DMA'ble */
if (!dma_capable(dev, dev_addr, size)) {
swiotlb_tbl_unmap_single(dev, map, size, dir);
return phys_to_dma(dev, io_tlb_overflow_buffer);
}
return dev_addr;
}
phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
dma_addr_t tbl_dma_addr,
phys_addr_t orig_addr, size_t size,
enum dma_data_direction dir)
{
unsigned long flags;
phys_addr_t tlb_addr;
unsigned int nslots, stride, index, wrap;
int i;
unsigned long mask;
unsigned long offset_slots;
unsigned long max_slots;
if (no_iotlb_memory)
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
mask = dma_get_seg_boundary(hwdev);
tbl_dma_addr &= mask;
offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
/*
* Carefully handle integer overflow which can occur when mask == ~0UL.
*/
max_slots = mask + 1
? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
: 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
/*
* For mappings greater than a page, we limit the stride (and
* hence alignment) to a page size.
*/
nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
if (size > PAGE_SIZE)
stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
else
stride = 1;
BUG_ON(!nslots);
/*
* Find suitable number of IO TLB entries size that will fit this
* request and allocate a buffer from that IO TLB pool.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
index = ALIGN(io_tlb_index, stride);
if (index >= io_tlb_nslabs)
index = 0;
wrap = index;
do {
while (iommu_is_span_boundary(index, nslots, offset_slots,
max_slots)) {
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
if (index == wrap)
goto not_found;
}
/*
* If we find a slot that indicates we have 'nslots' number of
* contiguous buffers, we allocate the buffers from that slot
* and mark the entries as '0' indicating unavailable.
*/
if (io_tlb_list[index] >= nslots) {
int count = 0;
for (i = index; i < (int) (index + nslots); i++)
io_tlb_list[i] = 0;
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
/*
* Update the indices to avoid searching in the next
* round.
*/
io_tlb_index = ((index + nslots) < io_tlb_nslabs
? (index + nslots) : 0);
goto found;
}
index += stride;
if (index >= io_tlb_nslabs)
index = 0;
} while (index != wrap);
not_found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
if (printk_ratelimit())
dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
return SWIOTLB_MAP_ERROR;
found:
spin_unlock_irqrestore(&io_tlb_lock, flags);
/*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
*/
for (i = 0; i < nslots; i++)
io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
return tlb_addr;
}
如果通过swiotlb分配的内存给DMA用于将数据从Device拷贝到内存,则DMA将数据拷贝到内存后,需要通知CPU,CPU在访问数据前需要先调用sync函数,sync主要用于将数据从swiotlb buffer拷贝到原始物理地址处。
void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir,
enum dma_sync_target target)
{
int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = io_tlb_orig_addr[index];
if (orig_addr == INVALID_PHYS_ADDR)
return;
orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
switch (target) {
case SYNC_FOR_CPU:
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr,
size, DMA_FROM_DEVICE);
else
BUG_ON(dir != DMA_TO_DEVICE);
break;
case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr,
size, DMA_TO_DEVICE);
else
BUG_ON(dir != DMA_FROM_DEVICE);
break;
default:
BUG();
}
}
void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir)
{
unsigned long flags;
int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = io_tlb_orig_addr[index];
/*
* First, sync the memory before unmapping the entry
*/
if (orig_addr != INVALID_PHYS_ADDR &&
((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
/*
* Return the buffer to the free list by setting the corresponding
* entries to indicate the number of contiguous entries available.
* While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned.
*/
spin_lock_irqsave(&io_tlb_lock, flags);
{
count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
io_tlb_list[index + nslots] : 0);
/*
* Step 1: return the slots to the free list, merging the
* slots with superceeding slots
*/
for (i = index + nslots - 1; i >= index; i--) {
io_tlb_list[i] = ++count;
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
}
/*
* Step 2: merge the returned slots with the preceding slots,
* if available (non zero)
*/
for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
io_tlb_list[i] = ++count;
}
spin_unlock_irqrestore(&io_tlb_lock, flags);
}
该函数会更新io_tlb_list和io_tlb_orig_addr以释放之前分配的slabs,这里我们不再祥诉。
这里我们需要注意的是,如果之前分配的内存的类型是DMA_FROM_DEVICE,这里会调用swiotlb_bounce函数将数据从swiotlb buffer拷贝到原始物理地址处。在使用上我们需要非常注意当调用dma_unmap_page的时候,一定要保证CPU没有在使用该page的数据,因为dma_unmap_page会用DMA送过来的原始数据覆盖最新的数据。举一个网卡的例子,通过swiotlb分配了一块DMA_FROM_DEVICE的内存,当有报文到来的时候,网卡的DMA会将报文送到swiotlb buffer,之后通过中断告知CPU有报文到来,CPU会先调用dma_sync_single_range_for_cpu函数,将数据从swiotlb buffer拷贝到原始物理地址处,然后将报文交给上层协议栈来处理,上层协议栈处理报文的时候会涉及对报文编辑,如果在协议栈处理报文的过程中调用dma_unmap_page,会导致原始报文覆盖编辑过的报文,进而引发错误。