面试题收录

面试题收录

  • 模型篇
    • 回归树和分类树
    • XGBoost
    • 二元分类器
    • 深度学习
    • 功能快捷键
    • 合理的创建标题,有助于目录的生成
    • 如何改变文本的样式
    • 插入链接与图片
    • 如何插入一段漂亮的代码片
    • 生成一个适合你的列表
    • 创建一个表格
      • 设定内容居中、居左、居右
      • SmartyPants
    • 创建一个自定义列表
    • 如何创建一个注脚
    • 注释也是必不可少的
    • KaTeX数学公式
    • 新的甘特图功能,丰富你的文章
    • UML 图表
    • FLowchart流程图
    • 导出与导入
      • 导出
      • 导入

模型篇

这里收录了单个模型和多个模型比较的题目。

回归树和分类树

  1. 两者区别
    分类树以C4.5分类树为例,C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1),按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,则以多数人的性别作为该叶子节点的性别。
    总结:分类树使用信息增益或增益比率来划分节点;每个节点样本的类别情况投票决定测试样本的类别
    回归树总体流程也是类似,区别在于,回归树的每个节点(不一定是叶子节点)都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化均方差即(每个人的年龄-预测年龄)^2 的总和 / N。也就是被预测出错的人数越多,错的越离谱,均方差就越大,通过最小化均方差能够找到最可靠的分枝依据。分枝直到每个叶子节点上人的年龄都唯一或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。
    总结:回归树使用最大均方差划分节点;每个节点样本的均值作为测试样本的回归预测值

  2. 决策树节点分裂时如何选择特征,写出Gini index和Information Gain的公式并举例说明
    G i n i = ∑ i = 1 C ( p i ) 2 Gini = \sum^C_{i=1}(p_i)^2 Gini=i=1C(pi)2
    E n t r o p y = ∑ i = 1 C − p i ∗ log ⁡ 2 ( p i ) Entropy = \sum^C_{i=1}-p_i*\log_2(p_i) Entropy=i=1Cpilog2(pi)
    Information gain is the entropy of the parent node minus the entropy of the child node.

XGBoost

  1. 哪里做到了并行?
    xgb在选择最佳分裂点,进行枚举的时候并行。

二元分类器

  1. 为什么不用逻辑回归,要用GBM?
    逻辑回归是二元线性分类器。决策边界是线性的,通常适于处理线性问题。如果要捕捉非线性关系,就需要复杂的特征工程,来增强模型的表达能力。
    GBDT是由多棵决策树组成,最终结果是所有树的结论累加而成。能够发现许多有区分性的特征,更细地划分特征空间。可以处理线性和非线性数据。

深度学习

  1. dropout为什么可以防止过拟合?
    Dropout可以被认为是一种bagging。
    Dropout可以减少神经元之间复杂的共适应关系,因为Dropout使得某两个神经元不一定每次都在一个子网络结构中出现。基于此权值的更新不在依赖于固定关系的隐含节点的共同作用,使得了在丢失某些特定信息的情况下依然可以从其它信息中学到一些模式(鲁棒性),迫使网络去学习更加鲁棒的特征(更加具有通适性)。

  2. 牛顿法与梯度法
    梯度下降法的公式如下:
    x n = x n − 1 − γ n − 1 ∇ f ( x n − 1 ) x_n = x_{n-1} - \gamma_{n-1}\nabla f(x_{n-1}) xn=xn1γn1f(xn1)
    牛顿法的公式如下:
    x n = x n − 1 − ∇ f ( x n − 1 ) H ( f ( x n − 1 ) ) x_n = x_{n-1} - \frac{\nabla f(x_{n-1})}{H(f(x_{n-1}))} xn=xn1H(f(xn1))f(xn1)
    可以看到梯度法要求的是一阶导数,牛顿法要求二阶导数且求海塞矩阵的逆,因此来说比较耗时。
    总的来说,梯度法和牛顿法有如下区别:

  • 梯度下降法是一阶优化算法,牛顿法是二阶优化算法
    牛顿法的收敛速度相比梯度下降法常常较快,但是计算开销大,实际中常用拟牛顿法
  • 牛顿法对初始值有一定要求,在非凸优化问题中(如神经网络训练),牛顿法很容易陷入鞍点(牛顿法步长会越来越小),而梯度下降法则很容易逃离鞍点(因此在神经网络训练中一般使用梯度下降法,高维空间的神经网络中存在大量鞍点)
  • 梯度下降法在靠近最优点时会震荡,因此步长调整在梯度下降法中是必要的,具体有adagrad, adadelta, rmsprop, adam等一系列自适应学习率的方法

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目 Value
电脑 $1600
手机 $12
导管 $1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列 第二列 第三列
第一列文本居中 第二列文本居右 第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPE ASCII HTML
Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
Quotes "Isn't this fun?" “Isn’t this fun?”
Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。1

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. 注脚的解释 ↩︎

你可能感兴趣的:(面试题收录)