此文已由作者张镐薪授权网易云社区发布。
欢迎访问网易云社区,了解更多网易技术产品运营经验。
调用processInsert(sc,schema,sqlType,origSQL,tableName,primaryKey):
public static boolean processInsert(ServerConnection sc,SchemaConfig schema, int sqlType,String origSQL,String tableName,String primaryKey) throws SQLNonTransientException { int firstLeftBracketIndex = origSQL.indexOf("("); int firstRightBracketIndex = origSQL.indexOf(")"); String upperSql = origSQL.toUpperCase(); int valuesIndex = upperSql.indexOf("VALUES"); int selectIndex = upperSql.indexOf("SELECT"); int fromIndex = upperSql.indexOf("FROM"); //屏蔽insert into table1 select * from table2语句 if(firstLeftBracketIndex < 0) { String msg = "invalid sql:" + origSQL; LOGGER.warn(msg); throw new SQLNonTransientException(msg); } //屏蔽批量插入 if(selectIndex > 0 &&fromIndex>0&&selectIndex>firstRightBracketIndex&&valuesIndex<0) { String msg = "multi insert not provided" ; LOGGER.warn(msg); throw new SQLNonTransientException(msg); } //插入语句必须提供列结构,因为MyCat默认对于表结构无感知 if(valuesIndex + "VALUES".length() <= firstLeftBracketIndex) { throw new SQLSyntaxErrorException("insert must provide ColumnList"); } //如果主键不在插入语句的fields中,则需要进一步处理 boolean processedInsert=!isPKInFields(origSQL,primaryKey,firstLeftBracketIndex,firstRightBracketIndex); if(processedInsert){ processInsert(sc,schema,sqlType,origSQL,tableName,primaryKey,firstLeftBracketIndex+1,origSQL.indexOf('(',firstRightBracketIndex)+1); } return processedInsert; }
对于主键不在插入语句的fields中的SQL,需要改写。比如hotnews主键为id,插入语句为:
insert into hotnews(title) values('aaa');
需要改写成:
insert into hotnews(id, title) values(next value for MYCATSEQ_hotnews,'aaa');
这个在下面这个函数实现:
private static void processInsert(ServerConnection sc, SchemaConfig schema, int sqlType, String origSQL, String tableName, String primaryKey, int afterFirstLeftBracketIndex, int afterLastLeftBracketIndex) { int primaryKeyLength = primaryKey.length(); int insertSegOffset = afterFirstLeftBracketIndex; String mycatSeqPrefix = "next value for MYCATSEQ_"; int mycatSeqPrefixLength = mycatSeqPrefix.length(); int tableNameLength = tableName.length(); char[] newSQLBuf = new char[origSQL.length() + primaryKeyLength + mycatSeqPrefixLength + tableNameLength + 2]; origSQL.getChars(0, afterFirstLeftBracketIndex, newSQLBuf, 0); primaryKey.getChars(0, primaryKeyLength, newSQLBuf, insertSegOffset); insertSegOffset += primaryKeyLength; newSQLBuf[insertSegOffset] = ','; insertSegOffset++; origSQL.getChars(afterFirstLeftBracketIndex, afterLastLeftBracketIndex, newSQLBuf, insertSegOffset); insertSegOffset += afterLastLeftBracketIndex - afterFirstLeftBracketIndex; mycatSeqPrefix.getChars(0, mycatSeqPrefixLength, newSQLBuf, insertSegOffset); insertSegOffset += mycatSeqPrefixLength; tableName.getChars(0, tableNameLength, newSQLBuf, insertSegOffset); insertSegOffset += tableNameLength; newSQLBuf[insertSegOffset] = ','; insertSegOffset++; origSQL.getChars(afterLastLeftBracketIndex, origSQL.length(), newSQLBuf, insertSegOffset); processSQL(sc, schema, new String(newSQLBuf), sqlType); }
最后的processSQL(sc, schema, new String(newSQLBuf), sqlType);是将语句放入执行队列: 这里MyCat考虑NIO线程吞吐量以及全局ID生成线程安全的问题,使用如下流程执行需要全局ID的SQL insert语句。 processSQL(sc, schema, new String(newSQLBuf), sqlType):
SessionSQLPair sessionSQLPair = new SessionSQLPair(sc.getSession2(), schema, sql, sqlType); MycatServer.getInstance().getSequnceProcessor().addNewSql(sessionSQLPair);
5.4 DDL语句路由
可以分为两步,整体源代码:
public static RouteResultset routeToDDLNode(RouteResultset rrs, int sqlType, String stmt,SchemaConfig schema) throws SQLSyntaxErrorException { stmt = getFixedSql(stmt); String tablename = ""; final String upStmt = stmt.toUpperCase(); if(upStmt.startsWith("CREATE")){ if (upStmt.contains("CREATE INDEX ")){ tablename = RouterUtil.getTableName(stmt, RouterUtil.getCreateIndexPos(upStmt, 0)); }else tablename = RouterUtil.getTableName(stmt, RouterUtil.getCreateTablePos(upStmt, 0)); }else if(upStmt.startsWith("DROP")){ if (upStmt.contains("DROP INDEX ")){ tablename = RouterUtil.getTableName(stmt, RouterUtil.getDropIndexPos(upStmt, 0)); }else tablename = RouterUtil.getTableName(stmt, RouterUtil.getDropTablePos(upStmt, 0)); }else if(upStmt.startsWith("ALTER")){ tablename = RouterUtil.getTableName(stmt, RouterUtil.getAlterTablePos(upStmt, 0)); }else if (upStmt.startsWith("TRUNCATE")){ tablename = RouterUtil.getTableName(stmt, RouterUtil.getTruncateTablePos(upStmt, 0)); } tablename = tablename.toUpperCase(); if (schema.getTables().containsKey(tablename)){ if(ServerParse.DDL==sqlType){ ListdataNodes = new ArrayList<>(); Map tables = schema.getTables(); TableConfig tc; if (tables != null && (tc = tables.get(tablename)) != null) { dataNodes = tc.getDataNodes(); } Iterator iterator1 = dataNodes.iterator(); int nodeSize = dataNodes.size(); RouteResultsetNode[] nodes = new RouteResultsetNode[nodeSize]; for(int i=0;i 首先,获取表名,步骤如下:
拿一个获取表名的函数举例:
/** * 获取语句中前关键字位置和占位个数表名位置 * * @param upStmt * 执行语句 * @param start * 开始位置 * @return int[]关键字位置和占位个数 * @author aStoneGod */public static int[] getCreateIndexPos(String upStmt, int start) { String token1 = "CREATE "; String token2 = " INDEX "; String token3 = " ON "; int createInd = upStmt.indexOf(token1, start); int idxInd = upStmt.indexOf(token2, start); int onInd = upStmt.indexOf(token3, start); // 既包含CREATE又包含INDEX,且CREATE关键字在INDEX关键字之前, 且包含ON... if (createInd >= 0 && idxInd > 0 && idxInd > createInd && onInd > 0 && onInd > idxInd) { return new int[] {onInd , token3.length() }; } else { return new int[] { -1, token2.length() };// 不满足条件时,只关注第一个返回值为-1,第二个任意 } }然后,根据表名获取配置进行路由:
默认语句路由
对于有默认节点的schema,且不是show, describe, select @@之类的语句,则路由到默认的节点上。 对于show, describe, select @@之类的语句,利用查询信息路由方法算出路由。接下来,取一个举例,对于Show语句:analyseShowSQL(schema, rrs, stmt)方法
5.5 AST语义解析路由
首先我们看一下MySQL的SQL解析步骤(硬解析和软解析):MyCat的机制,仿照MySQL的,可以总结为:这里我们可以总结一个优化思路,就是通过仿照MySQL物理优化原理(定时更新表配置,报表信息),来做进一步MyCat查询的优化。语义解析基本过程:
1.词法分析(一般抽象都叫Lexer):不同的关键词有不同的含义
select concat(id,'_',name),value from student where value>60 order by value词法分析的输出,就是一句带上词义的语句:
(select: Keyword) (concat: Keyword)((: LB)…… (from: keyword) (student: identifier)2.语法分析:
分析关键词之间的联系,生成表达式(expression)
基本语法正确性判断(比如from这个keyword之后必须紧跟一个表名(就是一个identifier))
3.生成AST语意树(完整解析的statement)根据MyCat权威指南,DruidParser比其他Parser快很多很多。 快在哪里呢?主要是抽象静态化的粒度,拿jsqlparser和druidparser对比。 这两个parser都遵从了上面的步骤,对于词(lexer),表达式(expression)和语句AST(statement)都有抽象。 但是对于语句AST(statement)的抽象, DruidParser做的粒度更细。如下图对于Alter语句的对比:所以,不难推测为啥DruidParser快了
免费体验云安全(易盾)内容安全、验证码等服务
更多网易技术、产品、运营经验分享请点击。
相关文章:
【推荐】 如何解决在线网页挂载本地样式的问题
【推荐】 如何作缺陷分析