题意 :给你n个数,还有m和k,让你找一个区间使这个公式的值最大 其中⌈x⌉是对x向上取整,l和r是所选的区间的左右下标。
思路 :定义一个dp[i][j],表示第i个数作为右端点,区间长度对m取余为j的最大值。那么就可以得到转移方程:
dp[i][j%m]=max(a[i]-k,dp[i-1][0]+a[i]-k );///当j等于1时
dp[i][j%m]=dp[i-1][(j-1+m)%m]+a[i];///当j不等于1时
余数等于1时就相当于从余数为零再加一个a[i] 那么K也要多减一个,其他时候因为j-1和j 向上取整相同就不需要多减K。
You are given an array a1,a2,…,ana1,a2,…,an and two integers mm and kk.
You can choose some subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar.
The cost of subarray al,al+1,…,ar−1,aral,al+1,…,ar−1,ar is equal to ∑i=lrai−k⌈r−l+1m⌉∑i=lrai−k⌈r−l+1m⌉, where ⌈x⌉⌈x⌉ is the least integer greater than or equal to xx.
The cost of empty subarray is equal to zero.
For example, if m=3m=3, k=10k=10 and a=[2,−4,15,−3,4,8,3]a=[2,−4,15,−3,4,8,3], then the cost of some subarrays are:
Your task is to find the maximum cost of some subarray (possibly empty) of array aa.
Input
The first line contains three integers nn, mm, and kk (1≤n≤3⋅105,1≤m≤10,1≤k≤1091≤n≤3⋅105,1≤m≤10,1≤k≤109).
The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109).
Output
Print the maximum cost of some subarray of array aa.
Examples
input
7 3 10
2 -4 15 -3 4 8 3
output
7
input
5 2 1000
-13 -4 -9 -20 -11
output
0
#include
#include
#include
#include
#include
#include
#include
#include