scrapy+beautifulsoup+mongo数据库简单爬虫——利用搜索关键词爬取百度百科城市地理信息


本文中的内容和代码参考了以下:

http://blog.csdn.net/u010454729/article/details/50900716

http://cuiqingcai.com/912.html

http://zqdevres.qiniucdn.com/data/20160426130231/index.html


本文主要内容是scrapy+beautifulsoup+mongo数据库,快速搭建简单爬虫——利用搜索关键词爬取百度百科城市地理信息,并将结果存入mongo数据库中 。

scrapy是python语言的一个爬虫框架,利用scrapy可以快速的搭建一个爬虫,我们只需要根据自己的需要做一些小的修改就可以爬取信息了。scrapy还支持多线程、分布式。beautifulsoup是用来解析网页的。这里介绍一下利用scrapy写简单爬虫的过程,不涉及多线程和分布式这些内容。

首先安装scrapy

pip install scrapy即可

安装完成后,可以使用pip list 查看一下,如果在显示的列表里面看到scrapy即表示安装成功了,下面就可以开始写爬虫了。

第一步是构建爬虫工程

scrapy startproject tutorial

最后一个是工程的名字,这里是tutorial。可以发现scrapy自动创建了一个tutorial的文件夹,里面已经有一些文件了。我们需要对这些文件进行一些修改就可以了。

第二步在tutorial\目录下的items.py中定义我们要抓取信息的格式。例如我希望抓取百度百科的某个城市页面中的城市名字、位置、气候三个信息。那么items.py中可以写成如下:

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy
from scrapy.item import Item,Field
class BaikeItem(scrapy.Item):
    name=Field()
    location=Field()
    climate=Field()
    

第三步在 tutorial\spiders目录下新建自己的爬虫文件,文件名字可以随意(例如我新建的Baike.py),因为scrapy执行的时候是认的文件内设置的name.Baike.py文件中定义了一个爬虫类,类中有两个主要方法,start_requests(self)和parse(self,response)。start_requests(self)方法里放置你要爬取的网址,parse方法里是对爬取到的网页内容解析。在parse方法中会用到之前定义的item,这里需要在文件开头引入定义好的item才可以使用,引用语句是from your_roject_name.items importyour_item。我这里使用了beautifulsoup对网页内容定位和提取,常用的还有xpath等。百度百科的页面比较乱,这里我的处理也比较繁琐,基本思路是先找到页面中的目录,然后根据目录的层级关系提取地理目录下的子目录。提取时,从地理目录开始,如果遇到下一个1级目录则结束。需要注意的是,parse函数中是可以定义将提取到的内容写入文件等操作,但不是必须的。还可以在pipline.py中对提取结果进行处理 。Baike.py详细代码如下:

 

#!/usr/bin/python2.7  
# -*- coding: utf-8 -*-
import xlrd
import uniout
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import codecs#用于打开文件夹保证编码格式
import scrapy
from scrapy.selector import Selector
from bs4 import BeautifulSoup as bs#用于解析html
import os#用于创建文件夹
import urllib2#用于爬取
import urllib
import re#用于匹配找到url
from tutorial.items import BaikeItem


class Baike(scrapy.Spider):
    name="baike"
    def read_xls_file(self,filename):
        data=[]
        xlrd.Book.encoding="utf-8"
        book= xlrd.open_workbook(filename)
        if book.nsheets<=0:
            return data
        table=book.sheet_by_index(0)
        data=table.col_values(0)
        i=0
        for col in table.col_values(0):
            data.append(table.cell_value(i,0))
            i=i+1
        return data   
        
    def start_requests(self):
        allowed_domains=["baidu.com"]
        #queries=["上海市"]
        queries=self.read_xls_file("citytest.xlsx")
        #print'read data:',queries
        #queries = ["上海市","武汉市","绵阳市","南京市","重庆市","明光市"]
        #根据关键字得到对应的百度百科页面url
        urls=[]
        for query in queries:
           # query=urllib.quote(query)
            query.encode('utf-8')
            print query
            #unicode(query)
            url = "http://baike.baidu.com/search/word?word="+query
            urls.append(url)
        for url in urls:
            yield scrapy.Request(url=url,callback=self.parse)
        
    def parse(self,response):
       
        items=[]
        soup=bs(response.body)
        #获取1级标题:地理
        title_li=soup.find_all("li",class_="level1")
        titles=[]
        texts1 = []
        lis=[]
        s0="地理"
        unicode(s0)
        item=BaikeItem()
        for i in title_li:
            span=i.find_next("span",class_="text")
            text =span.get_text()#这里,用get_text()就能够提取正文
            if(text.__contains__(s0)):
                lis=i.find_all_next("li")
                for li in lis:
                    list=li.get('class')
                    if not list is None:
                        str=list[0]
                        if(str== "level1"): #到下一个一级标题退出,只取地理这一个1级标题下的内容
                            break
                        if(str== "level2"):
                            lis.append(li)
                            span=li.find_next("span",class_="text")
                            text=span.get_text()
                            texts1.append(text)
                break
        for i in texts1:
            i.encode('utf-8')
            titles.append(i)
            print titles
################################################################
        #找到地理目录下的内容,这是需要提取的内容
        text_h3=soup.find_all("h3",class_="title-text")#找到h3标签
        #text_div=soup.find_all("div",class_="main-content")
        boolset=False
        boolwrite=False
        texts = []
        cityname=""
        locationstr="位置"
        climatestr="气候"
        unicode(locationstr)
        unicode(climatestr)
        for i in text_h3:
            text=i.get_text()
            for title in titles:
                if (text.__contains__(title)):
                    texts.append(title)
                    next_items=i.find_all_next()#找到所有后续节点
                    for next_item in next_items:
                        attr_name=next_item.name
                        if attr_name== "h3":#遇到下一个一级目录退出,只取一个目录下的内容
                            break
                        else:
                            if attr_name== "div":
                                attr_classes=next_item.get('class')
                                if not attr_classes is None and len(attr_classes)>0 and attr_classes[0]=="para":
                                    text = next_item.get_text()#这里,用get_text()就能够提取正文
                                    text = text.replace("\n","")#包含太多换行,去掉
                                    if text:
                                        texts.append(text)
                                        if title.__contains__(locationstr):
                                            item['location']=text
                                        if title.__contains__(climatestr):
                                            item['climate']=text
                                            dl=soup.find("dl",class_="basicInfo-block basicInfo-left")
                                            dt=dl.find_next("dd",class_="basicInfo-item value")
                                            cityname=dt.get_text()
                                            item['name']=cityname.strip()
                                            items.append(item)
        
                                        
        filename = response.url.split("/")[-2]+'.txt'
        filename.decode('ascii').encode('utf-8')
        write = codecs.open(filename,"w",encoding='utf-8')
        write.write("城市名称")
        write.write("\n")
        cityname.encode('utf-8')
        write.write(cityname)
        write.write("\n")
        for i in texts:
            i.encode('utf-8')
            write.write(i),
            write.write("\n"),
        write.close()
        return items
        

第四步介绍一下piplines.py.这个文件位于tutorial目录下,这里面是对提取结果的操作,可以将提取到的结果保存到json中写入文件,也可以链接数据库将结果写入数据库,我这里是链接mongo数据库,将结果写入mongo数据库中。这里要求本机装了mongo数据库并且已经运行,如果没有安装数据库的话可以将链接数据库的部分注释掉再运行。piplines详细代码如下:

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
from scrapy.conf import settings

from scrapy import signals
import json
import codecs
class JsonWithEncodingBaikePipeline(object):
    def __init__(self):
        #self.file=codecs.open('cityInfo.json','w',encoding='utf-8')
        #链接数据库
        self.client=pymongo.MongoClient(host=settings['MONGO_HOST'],port=settings['MONGO_PORT'])
        self.db = self.client[settings['MONGO_DB']]  # 获得数据库的句柄
        self.coll = self.db[settings['MONGO_COLL']]  # 获得collection的句柄
        
    def process_item(self, item, spider):
        postItem = dict(item)  # 把item转化成字典形式
        self.coll.insert(postItem)  # 向数据库插入一条记录
        return item  # 会在控制台输出原item数据,可以选择不写
##        line = json.dumps(dict(item), ensure_ascii=False) + "\n"
##        self.file.write(line)
##        return item
    def spider_closed(self, spider):
        self.file.close()
    
class TutorialPipeline(object):
    def process_item(self, item, spider):
        return item

 

第五步在settings.py中进行一些设置。settings.py详细代码如下:

# -*- coding: utf-8 -*-

# Scrapy settings for tutorial project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'tutorial'

SPIDER_MODULES = ['tutorial.spiders']
NEWSPIDER_MODULE = 'tutorial.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'tutorial (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

##MOGO_DB
MONGO_HOST = "127.0.0.1"  # 主机IP
MONGO_PORT = 27017  # 端口号
MONGO_DB = "xhltest"  # 库名 
MONGO_COLL = "baikecity"  # collection名
# MONGO_USER = "user" #ruguo如果xuyao如果需要yong如果需要用huming如果需要用户名he如果需要用户名和mima
# MONGO_PSW = "123456"

DOWNLOAD_DELAY = 2

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'tutorial.pipelines.JsonWithEncodingBaikePipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'


第六步,现在爬虫已经写好了     执行 scrapy crawl baike 

爬虫就可以工作了。抓取到的城市地理信息如下:

scrapy+beautifulsoup+mongo数据库简单爬虫——利用搜索关键词爬取百度百科城市地理信息_第1张图片

 

 

 

 

 

 

 

 

 



 

 

 

 

 

你可能感兴趣的:(else,scrapy,爬虫)