并发模型 Actor

Actor模式是一种并发模型,与另一种模型共享内存完全相反,Actor模型share nothing。所有的线程(或进程)通过消息传递的方式进行合作,这些线程(或进程)称为Actor。共享内存更适合单机多核的并发编程,而且共享带来的问题很多,编程也困难。随着多核时代和分布式系统的到来,共享模型已经不太适合并发编程,因此几十年前就已经出现的Actor模型又重新受到了人们的重视。MapReduce就是一种典型的Actor模式,而在语言级对Actor支持的编程语言Erlang又重新火了起来,Scala也提供了Actor,但是并不是在语言层面支持,Java也有第三方的Actor包,Go语言channel机制也是一种类Actor模型。

 

单线程编程


单核单机时代一般都是单线程编程,如果把程序比作一个工厂,那么只有一个工人,这个工人负责所有的事情,所有的原料,工具产品等都放到一个地方,因为只有一个人,因此使用一套工具就行,取原料也不用排队等。并发模型 Actor_第1张图片

 

多线程编程-共享内存


到了多核时代,有多个工人,这些工人共同使用一个仓库和车间,干什么都要排队。比如我要从一块钢料切出一块来用,我得等别人先用完。有个扳手,另一个人在用,我得等他用完。两个人都要用一个切割机从一块钢材切一块钢铁下来用,但是一个人拿到了钢材,一个人拿到了切割机,他们互相都不退让,结果谁都干不了活。

并发模型 Actor_第2张图片

假如现在有一个任务,找100000以内的素数的个数,最多使用是个线程,如果用共享内存的方法,可以用下面的代码实现。可以看到,这些线程共享了currentNum和totalPrimeCount,对它们做操作时必须上锁。

public  class  PrimeCount  implements  Runnable {
    
     private  int  currentNum =  2 ;   //从2开始找
     private  int  totalPrimeCount =  0 //当前已经找到的
     
     //取一个数,不能重复,最大到100000
     private  int  incrCurrentNum() { 
         synchronized  ( this ) {      //如果不用锁,必然会出错。
             if (currentNum >  100000 ) {
                 return  - 1 ;
             else  {
                 int  result = currentNum;
                 currentNum++;
                 return  result;
             }  
         }
     }
     
    //把某个线程找到的素数个数加上
     private  void  accPrimeCount( int  count) { 
         synchronized  ( this ) {
             totalPrimeCount += count;
         }
     }
     
     @Override
      //一直取数并判断是否为素数,取不到了就把找到的个数累加
     public  void  run() { 
         int  primeCount =  0 ;
         int  num;
         while ((num=incrCurrentNum()) != - 1 ) {
             if (isPrime(num)) {
                 primeCount++;
             }
         }
         accPrimeCount(primeCount);
     }
     private  boolean  isPrime( int  num) {
         for ( int  i =  2 ; i < num; i++) {
             if (num % i ==  0 ) {
                 return  false ;
             }
         }
         return  true ;
    
     
     @SuppressWarnings ( "static-access" )
     public  static  void  main(String[] args){
         PrimeCount pc =  new  PrimeCount();
         for ( int  i =  0 ; i <  10 ; i++) {
             new  Thread(pc).start();
         }
         try  {
             Thread.currentThread().sleep( 5000 );
         catch  (InterruptedException e) {
             // TODO Auto-generated catch block
             e.printStackTrace();
         }
         System.out.println(pc.getTotalPrimeCount());
     }
     
     public  int  getTotalPrimeCount() {
         return  totalPrimeCount;
     }
  
}

 

多线程/分布式编程-Actor模型


到了分布式系统时代,工厂已经用流水线了,每个人都有明确分工,这就是Actor模式。每个线程都是一个Actor,这些Actor不共享任何内存,所有的数据都是通过消息传递的方式进行的。

并发模型 Actor_第3张图片

 

如果用Actor模型实现统计素数个数,那么我们需要1个actor做原料的分发,就是提供要处理的整数,然后10个actor加工,每次从分发actor那里拿一个整数进行加工,最终把加工出来的半成品发给组装actor,组装actor把10个加工actor的结果汇总输出。

用scala实现,下面是工程的结构:

并发模型 Actor_第4张图片

这是它们传递的消息,有一些指令,剩下的都是Int数据:

并发模型 Actor_第5张图片

一个Actor的代码结构一般是下面这种结构,不停的接受消息并处理,没有消息就等待:

并发模型 Actor_第6张图片

组装者代码:

并发模型 Actor_第7张图片

分发者代码:

并发模型 Actor_第8张图片

加工者代码:

并发模型 Actor_第9张图片

主线程代码:

并发模型 Actor_第10张图片

你可能感兴趣的:(网络编程)