Project Euler Problem 53

Problem 53

There are exactly ten ways of selecting three from five, 12345:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

In combinatorics, we use the notation, 5C3 = 10.

In general,

nCr=n!r!(nr)!

, where r ≤ n, n! = n×(n−1)×…×3×2×1, and 0! = 1.

It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.

How many, not necessarily distinct, values of  nCr, for 1 ≤ n ≤ 100, are greater than one-million?

从五个数12345中选择三个恰好有十种方式,分别是:

123、124、125、134、135、145、234、235、245和345

在组合数学中,我们记作:5C3 = 10。

一般来说,

nCr=n!r!(nr)!

,其中r ≤ n,n! = n×(n−1)×…×3×2×1,且0! = 1。

直到n = 23时,才出现了超出一百万的组合数:23C10 = 1144066。

若数值相等形式不同也视为不同,对于1 ≤ n ≤ 100,有多少个组合数nCr超过一百万?


sum1 = 0
for n in range(1, 101):
    pdc = n
    temp = n - 1
    for r in range(2, int(n/2)+1):
        pdc *= temp/r 
        if pdc > 1000000:
            # print(n,r)
            # print(pdc)
            sum1 += (n - 1 - 2*(r-1))
            break
        temp -= 1
print(sum1)

你可能感兴趣的:(Project,Euler)