Python爬虫豆瓣租房信息

任务描述

使用python爬虫,实现获取豆瓣“深圳租房团”的租房信息,并筛选适合个人的房源存入Excel。

实现方案

Python爬虫豆瓣租房信息_第1张图片

获取网站所有数据 requests

多个网站时,无法输入参数,使用 idx 来索引需要的网页,然后循环获取

import requests

def download_all_htmls():
    """
    获取所有列表页面的HTML,用于后续的分析
    """
    htmls = []
    for idx in page_indexs:
        url = f"https://www.douban.com/group/106955/discussion?start={idx}"
        print("craw html:", url)
        r = requests.get(url,
                        headers={
     "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
        if r.status_code != 200:
            raise Exception("error")
        htmls.append(r.text)
    return htmls

htmls = download_all_htmls()


若只需要获取单个网站,可以直接把网址当做参数输入

import requests

def download_specific_htmls(url):
    print("craw html:", url)
    r = requests.get(url,
                    headers={
     "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
    if r.status_code != 200:
        raise Exception("error")
    html = r.text
    return html

找到对应标签 BeautifulSoup4

利用 findfind_all 两个函数来找到对应的标签, get_text 来获取文本。

from bs4 import BeautifulSoup

def parse_single_html(html):
    """
    解析单个HTML,得到数据
    @return list({"link", "title", [label]})
    """
    soup = BeautifulSoup(html, 'html.parser')

    article_items = (
        soup.find("table", class_="olt")
            .find_all("tr", class_="")
    )
    datas = []
    for article_item in article_items:
        #rank = article_item.find("div", class_="pic").find("em").get_text()
        #info = article_item.find("div", class_="info")
        
        title = article_item.find("td", class_="title").get_text()
        link = article_item.find("a")["href"]
        
        datas.append({
     
            "title":title,
            "link":link
        })

    return datas

匹配筛选 re

中文很难使用 re.match 进行匹配,一直纠结在各种编码上,最后使用了 re.search 函数来代替

title = article_item.find("td", class_="title").get_text()
link = article_item.find("a")["href"]


res1 = re.search("前海湾|临海|宝华|宝安中心|翻身|灵芝|洪浪北",title)
res2 = re.search("求租|合租",title)

res3 = re.search("1[0-9][0-9][0-9]", title)
res4 = re.search("2[0-5][0-9][0-9]", title)

res5 = re.search("一房一厅|一厅一房|一室一厅|一厅一室", title)

if res1 is not None and res2 is None:
    if res3 or res4 is not None:
        if res5 is not None:
            datas.append({
     
                "title":title,
                "link":link
            })
            else:
                #html_specific = []
                html_specific = download_specific_htmls(link)
                soup_specific = BeautifulSoup(html_specific, 'html.parser')
                article_box = soup_specific.find("div", class_="article").find("div", class_="topic-content clearfix").find("div",class_="topic-doc").find("div",class_="topic-content").find("div",class_="topic-richtext")
                text = article_box.get_text()
                print(text)
                res_specific1 = re.search("一房一厅|一厅一房|一室一厅|一厅一室",text)
                res_specific2 = re.search("合租",text)                
                if res_specific1 is not None and res_specific2 is None:
                    datas.append({
     
                        "title":title,
                        "link":link
                    })

导入excel pandas

使用pandas进行导入

all_datas = []
for html in htmls:
    all_datas.extend(parse_single_html(html))
#print(all_datas)
df = pd.DataFrame(all_datas)
df.to_excel("test.xlsx")

结果

image.png

完整代码

import requests
from bs4 import BeautifulSoup
import pandas as pd
import re
page_indexs = range(0,10000,25)


def download_all_htmls():
    """
    下载所有列表页面的HTML,用于后续的分析
    """
    htmls = []
    for idx in page_indexs:
        url = f"https://www.douban.com/group/106955/discussion?start={idx}"
        print("craw html:", url)
        r = requests.get(url,
                        headers={
     "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
        if r.status_code != 200:
            raise Exception("error")
        htmls.append(r.text)
    return htmls

htmls = download_all_htmls()

def download_specific_htmls(url):
    """
    下载所有列表页面的HTML,用于后续的分析
    """
    print("craw html:", url)
    r = requests.get(url,
                    headers={
     "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
    if r.status_code != 200:
        raise Exception("error")
    html = r.text
    return html

def parse_single_html(html):
    """
    解析单个HTML,得到数据
    @return list({"link", "title", [label]})
    """
    soup = BeautifulSoup(html, 'html.parser')

    article_items = (
        soup.find("table", class_="olt")
            .find_all("tr", class_="")
    )
    datas = []
    for article_item in article_items:
        #rank = article_item.find("div", class_="pic").find("em").get_text()
        #info = article_item.find("div", class_="info")
        
        title = article_item.find("td", class_="title").get_text()
        link = article_item.find("a")["href"]
        
        
        res1 = re.search("前海湾|临海|宝华|宝安中心|翻身|灵芝|洪浪北",title)
        res2 = re.search("求租|合租",title)
        
        res3 = re.search("1[0-9][0-9][0-9]", title)
        res4 = re.search("2[0-5][0-9][0-9]", title)
        
        res5 = re.search("一房一厅|一厅一房|一室一厅|一厅一室", title)
        
        if res1 is not None and res2 is None:
            if res3 or res4 is not None:
                if res5 is not None:
                    datas.append({
     
                        "title":title,
                        "link":link
                    })
                else:
                    #html_specific = []
                    html_specific = download_specific_htmls(link)
                    soup_specific = BeautifulSoup(html_specific, 'html.parser')
                    article_box = soup_specific.find("div", class_="article").find("div", class_="topic-content clearfix").find("div",class_="topic-doc").find("div",class_="topic-content").find("div",class_="topic-richtext")
                    text = article_box.get_text()
                    print(text)
                    res_specific1 = re.search("一房一厅|一厅一房|一室一厅|一厅一室",text)
                    res_specific2 = re.search("合租",text)                
                    if res_specific1 is not None and res_specific2 is None:
                        datas.append({
     
                            "title":title,
                            "link":link
                        })
        
    return datas

all_datas = []
for html in htmls:
    all_datas.extend(parse_single_html(html))
#print(all_datas)
df = pd.DataFrame(all_datas)
df.to_excel("test.xlsx")

你可能感兴趣的:(Python,python,html,数据分析)