(1)Mxnet的数据格式为NDArray,当需要读取可观看的数据,就要调用:
numpy_d = d.asnumpy()
converts it to a Numpy array.
(2)list_arguments (给出当前符号d的输入变量)与list_outputs(给出符号d的输出变量)的说明
import mxnet as mx a = mx.sym.Variable("A") # represent a placeholder. These can be inputs, weights, or anything else. b = mx.sym.Variable("B") c = (a + b) / 10 d = c + 1
调用list_arguments 得到的一定就是用于d计算的所有symbol
d.list_arguments() # ['A', 'B']调用list_outputs()得到的就是输出的名字:
d.list_outputs() # ['_plusscalar0_output'] This is the default name from adding to scalar.,上面在查看名称,下面教你如何查看各个层的大小
# define input shapes inp_shapes = {'A':(10,), 'B':(10,)} arg_shapes, out_shapes, aux_shapes = d.infer_shape(**inp_shapes) arg_shapes # the shapes of all the inputs to the graph. Order matches d.list_arguments() # [(10, ), (10, )] out_shapes # the shapes of all outputs. Order matches d.list_outputs() # [(10, )] aux_shapes # the shapes of auxiliary variables. These are variables that are not trainable such as batch normalization population statistics. For now, they are save to ignore. # []
关于Grad_req的使用,符号描述完后,需要bind,得到一个executor
在使用bing进行绑定,且不需要做反向递归时:
input_arguments = {} input_arguments['A'] = mx.nd.ones((10, ), ctx=mx.cpu()) input_arguments['B'] = mx.nd.ones((10, ), ctx=mx.cpu()) executor = d.bind(ctx=mx.cpu(), args=input_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray grad_req='null') # don't request gradientsargs :指出输入的符号以及大小,以词典类型传入
grad_req : 设置为Null,说明不需要进行gradient计算
bind完之后,还需要调用一个forward(),就可以运算整个过程。当然,还可以通过executor,对输入的
变量再次进行相关的赋值。
import numpy as np # The executor executor.arg_dict # {'A': NDArray, 'B': NDArray} executor.arg_dict['A'][:] = np.random.rand(10,) # Note the [:]. This sets the contents of the array instead of setting the array to a new value instead of overwriting the variable. executor.arg_dict['B'][:] = np.random.rand(10,) executor.forward() executor.outputs # [NDArray] output_value = executor.outputs[0].asnumpy()
executor.arg_dict['A']是NDArray类型,再使用executor.arg_dict['A'][:]=赋值,表示以numpy的值覆盖NDArray类型的值,类型依旧是NDArray;如果不加[:],表示以numpy值的array类型直接覆盖。但运算的结果却仍然是以mx.nd.ones(10,)得到的.
获取输出的结果:excutor.outputs[0].asnumpy()
本章最重要的一个环节出现了:与上面的例子的区别在于,添加了一个后向传播过程。那么就需要对grad_req = 'write' ,同时调用backforwad.
# allocate space for inputs input_arguments = {} input_arguments['A'] = mx.nd.ones((10, ), ctx=mx.cpu()) input_arguments['B'] = mx.nd.ones((10, ), ctx=mx.cpu()) # allocate space for gradients grad_arguments = {} grad_arguments['A'] = mx.nd.ones((10, ), ctx=mx.cpu()) grad_arguments['B'] = mx.nd.ones((10, ), ctx=mx.cpu()) executor = d.bind(ctx=mx.cpu(), args=input_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray args_grad=grad_arguments, # this can be a list or a dictionary mapping names of inputs to NDArray grad_req='write') # instead of null, tell the executor to write gradients. This replaces the contents of grad_arguments with the gradients computed. executor.arg_dict['A'][:] = np.random.rand(10,) executor.arg_dict['B'][:] = np.random.rand(10,) executor.forward() # in this particular example, the output symbol is not a scalar or loss symbol. # Thus taking its gradient is not possible. # What is commonly done instead is to feed in the gradient from a future computation. # this is essentially how backpropagation works. out_grad = mx.nd.ones((10,), ctx=mx.cpu()) executor.backward([out_grad]) # because the graph only has one output, only one output grad is needed. executor.grad_arrays # [NDarray, NDArray]在调用Bind时,需要提前手动为gradient分配一个空间args_grad并且传入,同时grad_req 设置为 write。
再调用executor.forward()前向运行。
再调用excutor.backward()后向运行。输出的symbol既不是一个单量,也不是loss symbol。需要手动传入梯度。
与bind 相对的是 simple_bind,他有一个好处:不需要手动分配计算的梯度空间大小。
input_shapes = {'A': (10,), 'B': (10, )} executor = d.simple_bind(ctx=mx.cpu(), grad_req='write', # instead of null, tell the executor to write gradients **input_shapes) executor.arg_dict['A'][:] = np.random.rand(10,) executor.arg_dict['B'][:] = np.random.rand(10,) executor.forward() out_grad = mx.nd.ones((10,), ctx=mx.cpu()) executor.backward([out_grad])
只需要为simple_bind 设定 输入的大小,它会自动推断梯度所需的空间大小。
一套清晰简单的网络流程就为你摆放在面前了:
import mxnet as mx
import numpy as np
# First, the symbol needs to be defined
data = mx.sym.Variable("data") # input features, mxnet commonly calls this 'data'
label = mx.sym.Variable("softmax_label")
# One can either manually specify all the inputs to ops (data, weight and bias)
w1 = mx.sym.Variable("weight1")
b1 = mx.sym.Variable("bias1")
l1 = mx.sym.FullyConnected(data=data, num_hidden=128, name="layer1", weight=w1, bias=b1)
a1 = mx.sym.Activation(data=l1, act_type="relu", name="act1")
# Or let MXNet automatically create the needed arguments to ops
l2 = mx.sym.FullyConnected(data=a1, num_hidden=10, name="layer2")
# Create some loss symbol
cost_classification = mx.sym.SoftmaxOutput(data=l2, label=label)
# Bind an executor of a given batch size to do forward pass and get gradients
batch_size = 128
input_shapes = {"data": (batch_size, 28*28), "softmax_label": (batch_size, )}
executor = cost_classification.simple_bind(ctx=mx.gpu(0),
grad_req='write',
**input_shapes)
此时executor是训练时用
# The above executor computes gradients. When evaluating test data we don't need this.
# We want this executor to share weights with the above one, so we will use bind
# (instead of simple_bind) and use the other executor's arguments.
executor_test = cost_classification.bind(ctx=mx.gpu(0),
grad_req='null',
args=executor.arg_arrays)
executor_test 是测试时用
# executor 里含有arg_dict表示每层的名称
:bias1,data,layer2_bias,layer2_weight...
#executor 里含有 arg_arrays对应每层的具体数(诀窍:带arrays的表示数值)
# initialize the weights for r in executor.arg_arrays: r[:] = np.random.randn(*r.shape)*0.02 # Using skdata to get mnist data. This is for portability. Can sub in any data loading you like. from skdata.mnist.views import OfficialVectorClassification data = OfficialVectorClassification() trIdx = data.sel_idxs[:] teIdx = data.val_idxs[:] for epoch in range(10): print "Starting epoch", epoch np.random.shuffle(trIdx) #每128个样本,作为一个batchsize for x in range(0, len(trIdx), batch_size): # extract a batch from mnist batchX = data.all_vectors[trIdx[x:x+batch_size]] batchY = data.all_labels[trIdx[x:x+batch_size]] # our executor was bound to 128 size. Throw out non matching batches. if batchX.shape[0] != batch_size: continue # Store batch in executor 'data'
#通过executor的 arg_dict 给予“名称”,就能获取该层的数值信息,例如设置'data',也就是赋予
#输入数据信息。一定要加上[:] ,表示overwritting executor.arg_dict['data'][:] = batchX / 255. # Store label's in 'softmax_label' executor.arg_dict['softmax_label'][:] = batchY executor.forward() executor.backward()
#进行一次forward以及一次backward之后,需要对权值进行一次更新。
#pname表示 # do weight updates in imperative for pname, W, G in zip(cost_classification.list_arguments(), executor.arg_arrays, executor.grad_arrays): # Don't update inputs # MXNet makes no distinction between weights and data. if pname in ['data', 'softmax_label']: continue # what ever fancy update to modify the parameters W[:] = W - G * .001 # Evaluation at each epoch num_correct = 0 num_total = 0 for x in range(0, len(teIdx), batch_size): batchX = data.all_vectors[teIdx[x:x+batch_size]] batchY = data.all_labels[teIdx[x:x+batch_size]] if batchX.shape[0] != batch_size: continue # use the test executor as we don't care about gradients executor_test.arg_dict['data'][:] = batchX / 255. executor_test.forward() num_correct += sum(batchY == np.argmax(executor_test.outputs[0].asnumpy(), axis=1)) num_total += len(batchY) print "Accuracy thus far", num_correct / float(num_total)