有 n n n种链子,第 i i i种链子长度为 i i i,有 a i a_i ai条,求用这些链子组合出长度为n的链子的方案数。
开始居然没看出来这是一道dp题
令 f i f_i fi为凑出长度为 i i i的链子的方案数
则有;
f i = ∑ j = 0 i − 1 f j ∗ a i − j , f 0 = 1 f_i=\sum_{j=0}^{i-1}f_j*a_{i-j}, f_0=1 fi=j=0∑i−1fj∗ai−j,f0=1
时间复杂度为 O ( n 2 ) O(n^2) O(n2),显然要T。
考虑优化。发现右半部分与卷积( a ∗ b = ∑ i = 1 n a i ∗ b i − j a*b=\sum_{i=1}^{n}a_i*b_{i-j} a∗b=∑i=1nai∗bi−j)类似。所以考虑使用FFT
然而如果说每次转移暴力FFT,则时间复杂度瞬间飙至 O ( n 2 l o g 2 n ) O(n^2log_2n) O(n2log2n),不如不优化。
于是我们介绍一个新科技:CDQ分治。
下面介绍一下它的基本步骤:
对 c d q ( l , r ) cdq(l, r) cdq(l,r)
1、求解 c d q ( l , m i d ) , m i d = ⌊ l + r 2 ⌋ cdq(l, mid), mid = \lfloor\frac{l+r}{2}\rfloor cdq(l,mid),mid=⌊2l+r⌋
2、计算 [ l , m i d ] [l,mid] [l,mid]对 [ m i d + 1 , r ] [mid+1,r] [mid+1,r]的贡献(对 [ m i d + 1 , r ] [mid+1, r] [mid+1,r]答案的影响)
3、求解 c d q ( m i d + 1 , r ) cdq(mid+1, r) cdq(mid+1,r)
继续yy优化。我们用 c d q ( l , r ) cdq(l,r) cdq(l,r)表示求解 f l , f l + 1 , f l + 2 . . . f r f_l, f_{l+1},f_{l+2}...f_r fl,fl+1,fl+2...fr
假设求出 c d q ( l , m i d ) cdq(l,mid) cdq(l,mid),令 g i g_i gi为 [ l , m i d ] [l, mid] [l,mid]对f[i]的贡献, h i , l = ∑ j = 0 l − 1 f j ∗ a i − j h_{i, l}=\sum_{j=0}^{l-1}f_j*a_{i-j} hi,l=∑j=0l−1fj∗ai−j
由定义:
f i = ∑ j = 0 i − 1 f j ∗ a i − j = ∑ j = 0 l − 1 f j ∗ a i − j + ∑ j = m i d + 1 i − 1 f j ∗ a i − j + g i = h i , l + ∑ j = m i d + 1 i − 1 f j ∗ a i − j + ∑ j = l m i d f j ∗ a i − j \begin{aligned} f_i&=\sum_{j=0}^{i-1}f_j*a_{i-j}\\ &=\sum_{j=0}^{l-1}f_j*a_{i-j}+\sum_{j=mid+1}^{i-1}f_j*a_{i-j}+g_i\\ &=h_{i, l}+\sum_{j=mid+1}^{i-1}f_j*a_{i-j}+\sum_{j=l}^{mid}f_j*a_{i-j}\\ \end{aligned} fi=j=0∑i−1fj∗ai−j=j=0∑l−1fj∗ai−j+j=mid+1∑i−1fj∗ai−j+gi=hi,l+j=mid+1∑i−1fj∗ai−j+j=l∑midfj∗ai−j
由 c d q ( l , r ) cdq(l,r) cdq(l,r)的过程可知, h i , l h_{i,l} hi,l已知, ∑ j = m i d + 1 i − 1 f j ∗ a i − j \sum_{j=mid+1}^{i-1}f_j*a_{i-j} ∑j=mid+1i−1fj∗ai−j将会在 c d q ( m i d + 1 , r ) cdq(mid+1,r) cdq(mid+1,r)中计算出,所以只需求 { f l , f l + 1 , . . . , f m i d } ∗ { a 1 , a 2 , . . . , a r − l + 1 } \{f_l,f_{l+1},...,f_{mid}\}*\{a_1,a_2,...,a_{r-l+1}\} {fl,fl+1,...,fmid}∗{a1,a2,...,ar−l+1}即可。
c d q ( l , r ) cdq(l,r) cdq(l,r)的过程时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n),FFT的时间复杂度为 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n),故总时间复杂度为 O ( n l o g 2 2 n ) O(nlog_2^2n) O(nlog22n)
#include
#include
#include
#include
using namespace std;
const int mn = 100005, mod = 313;
const double pi = acos(-1.0);
struct com{
double r, i;
com(double a = 0, double b = 0) : r(a), i(b) {}
com operator +(const com& t) {return com(r + t.r, i + t.i);}
com operator -(const com& t) {return com(r - t.r, i - t.i);}
com operator *(const com& t) {return com(r * t.r - i * t.i, r * t.i + i * t.r);}
}x[mn << 1], y[mn << 1], w, wn;
int a[mn], f[mn];
void change(com *x, int n)
{
for(int i = 1, j = n >> 1; i < n - 1; i++)
{
if(i < j)
swap(x[i], x[j]);
int k = n >> 1;
while(j >= k)
j -= k, k >>= 1;
j += k;
}
}
void fft(com x[], int n, int flag)
{
change(x, n);
for(int i = 2; i <= n; i <<= 1)
{
wn = com(cos(flag * 2 * pi / i), sin(flag * 2 * pi / i));
for(int j = 0; j < n; j += i)
{
w = com(1, 0);
for(int k = j; k < j + i / 2; k++)
{
com u = w * x[k + i / 2], v = x[k];
x[k] = v + u, x[k + i / 2] = v - u, w = w * wn;
}
}
}
if(flag == -1)
for(int i = 0; i < n; i++)
x[i].r /= n;
}
void cdq(int l, int r)
{
if(l == r)
{
f[l] += a[l], f[l] %= mod;
return;
}
int mid = (l + r) >> 1, i;
cdq(l, mid);
int len = 1;
while(len <= r - l + 1)
len <<= 1;
for(i = 0; i < len; i++)
x[i] = y[i] = com(0, 0);
for(i = l; i <= mid; i++)
x[i - l] = com(f[i], 0);
for(i = 1; i <= r - l + 1; i++)
y[i - 1] = com(a[i], 0);
fft(x, len, 1), fft(y, len, 1);
for(i = 0; i < len; i++)
x[i] = x[i] * y[i];
fft(x, len, -1);
for(i = mid + 1; i <= r; i++)
f[i] += int(x[i - l - 1].r + 0.5), f[i] %= mod;
cdq(mid + 1, r);
}
int main()
{
int n, i;
while(~scanf("%d", &n) && n)
{
for(i = 1; i <= n; i++)
scanf("%d", &a[i]), a[i] %= mod, f[i] = 0;
cdq(0, n);
printf("%d\n", f[n]);
}
}