AGC018:Tree and Hamilton Path(dfs & 树 哈密尔顿回路)

D - Tree and Hamilton Path


Time limit : 2sec / Memory limit : 256MB

Score : 1100 points

Problem Statement

There is a tree with N vertices, numbered 1 through N. The i-th edge in this tree connects Vertices Ai and Bi and has a length of Ci.

Joisino created a complete graph with N vertices. The length of the edge connecting Vertices u and v in this graph, is equal to the shortest distance between Vertices u and v in the tree above.

Joisino would like to know the length of the longest Hamiltonian path (see Notes) in this complete graph. Find the length of that path.

Notes

Hamiltonian path in a graph is a path in the graph that visits each vertex exactly once.

Constraints

  • 2N105
  • 1Ai<BiN
  • The given graph is a tree.
  • 1Ci108
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
A1 B1 C1
A2 B2 C2
:
AN1 BN1 CN1

Output

Print the length of the longest Hamiltonian path in the complete graph created by Joisino.


Sample Input 1

Copy
5
1 2 5
3 4 7
2 3 3
2 5 2

Sample Output 1

Copy
38

The length of the Hamiltonian path 5 → 3 → 1 → 4 → 2 is 5+8+15+10=38. Since there is no Hamiltonian path with length 39 or greater in the graph, the answer is 38.


Sample Input 2

Copy
8
2 8 8
1 5 1
4 8 2
2 5 4
3 8 6
6 8 9
2 7 12

Sample Output 2

Copy
132
题意:给一棵树,要求找出树上最长的一条的哈密尔顿回路。

思路:按边考虑,计算每条边最多能贡献几次,发现只要围着树的重心对称跑,每条边都能充分利用,边i的贡献为它的较小子树节点数*2*边权值,但有一条边例外,假如树的重心只有一个,该重心相连的一条边贡献减一,自然是减最小那条边。当有两个重心,减去两重心相连的边即可。


# include 
using namespace std;
typedef long long LL;
const int maxn = 1e5+30;
int n, id=0, cnt=0, Next[maxn], in[maxn], out[maxn], son[maxn]={0}, zhong[maxn];
int msize = 0x3f3f3f3f, mid;
LL ans = 0;
struct node{int e, w, next;}edge[maxn<<1];
void add_edge(int u, int v, int w)
{
    edge[cnt] = {v, w, Next[u]};
    Next[u] = cnt++;
    edge[cnt] = {u, w, Next[v]};
    Next[v] = cnt++;
}
void dfs(int cur, int pre, int w)
{
    in[cur] = ++id;
    int imax = 0;
    for(int i=Next[cur]; i!=-1; i=edge[i].next)
    {
        int v = edge[i].e;
        if(v == pre) continue;
        dfs(v, cur, edge[i].w);
        son[cur] += son[v] + 1;
        imax = max(imax, son[v]+1);
    }
    out[cur] = id;
    int imin = min(out[cur]-in[cur]+1, n-out[cur]+in[cur]-1);
    ans = ans + (LL)imin*w*2;
    imax = max(imax, n-1-son[cur]);
    zhong[cur] = imax;
    if(imax < msize)
    {
        msize = imax;
        mid = cur;
    }
}
int main()
{
    memset(Next, -1, sizeof(Next));
    int a, b, c;
    scanf("%d",&n);
    for(int i=1; i




你可能感兴趣的:(DFS)