RMQ(Range Minimum Query)问题是计算一个输入数列A[0...n-1]从位置i到位置j之间的最小值,即RMQ[i,j]=min{A[k], k=i,i+1...j}。RMQ的解法有很多,比如Sparse Table(ST)算法(注意这个ST缩写不是指Segement Tree哦)和转化为特殊的+1/-1 RMQ的算法。为了查询的方便,RMQ算法需要对数列A进行预处理(preprocessing),如果用
线段树解法首先构建线段树(一棵二叉树),根结点对应区间0...n-1,左右子树通过下标中间值分界并且没有重叠区间值,叶结点对应单值区间。如果设线段树根结点的高度为0,那么整棵树的高度不超过floor(logn)+1,按照完全二叉树的做法,将每个结点按level order存入一维数组M,数组M中每个元素值为该结点对应的区间[i...j]的最小值下标值k。虽然不能像完全二叉树那样保证元素之间没有空隙,但是可以利用下标值2k+1和2k+2快速访问某个结点k的左右孩子。查询时需要深度搜索树的结点,因此复杂度为O(logn),比起Sparse Table等算法的查询复杂度为O(1)要差一些。
实现:
/**
*
* Using Segment Tree to solve RMQ problem
* time complexity:
*
* RMQ(A)-Range Minimum Query on array A: find the minimum value/index in the range A[i..j]
*
*
*
*
* Copyright (c) 2011 ljs (http://blog.csdn.net/ljsspace/)
* Licensed under GPL (http://www.opensource.org/licenses/gpl-license.php)
*
* @author ljs
* 2011-08-02
*
*/
public class RMQ_SegmentTree {
//return the heap-like array of the segment tree
//(Note: the segment tree is not a complete tree, but we
//use an array to simulate a complete tree, so the array has some gaps)
public int[] buildSegmentTree(int[] A){
int n = A.length;
int heapHeight = (int)(Math.log(n)/Math.log(2))+1;//h=floor(logN)+1; h starts with 0.
int mSize = (1<<(heapHeight+1))-1; //total nodes = 2^(h+1)-1
int[] M = new int[mSize];
buildSegmentTree(M, 0, A, 0, n-1);
return M;
}
private void buildSegmentTree(int[] M,int node,int[] A,int i,int j){
if(i==j){
M[node] = i;
}else{
int leftnode=2*node+1;
int rightnode=leftnode+1;
buildSegmentTree(M,leftnode,A,i,(i+j)/2);
buildSegmentTree(M,rightnode,A,(i+j)/2+1,j);
if(A[M[leftnode]]<=A[M[rightnode]]){
M[node] = M[leftnode];
}else{
M[node] = M[rightnode];
}
}
}
//x..y is the query interval of RMQ
public int query(int[] M,int[] A,int x,int y){
int n=A.length;
return query(M,0,A,0,n-1,x,y);
}
//x..y is the query interval of RMQ
//i..j is the current interval of a segment sub-tree's root
private int query(int[] M,int node,int[] A,int i,int j,int x,int y){
//if the query interval doesn't intersect the current interval
//return -1
if (x>j || y=j){
return M[node];
}
//split query interval
int leftnode=2*node+1;
int rightnode=leftnode+1;
int mid = (i+j)/2;
if(x>mid){
//right branch
return query(M,rightnode,A,mid+1,j,x,y);
}else if(y<=mid){
//left branch
return query(M,leftnode,A,i,mid,x,y);
}else{
//mixed
int p1 = query(M,leftnode,A,i,mid,x,y);
int p2 = query(M,rightnode,A,mid+1,j,x,y);
if(p1==-1)return p2;
if(p2==-1)return p1;
if(A[p1]<=A[p2])
return p1;
else
return p2;
}
}
public static void main(String[] args) {
RMQ_SegmentTree rmqSegTree = new RMQ_SegmentTree();
int[] A = new int[]{0,1,2,3,7,1,9,2,8,6};
int[] M = rmqSegTree.buildSegmentTree(A);
//print RMQ table RMQ[i,j], each cell has the form: value/index
System.out.println("RMQ table:");
for(int x=0;x