【线性代数】详解正定矩阵、实对称矩阵、矩阵特征值分解、矩阵 SVD 分解

前言

本文主要针对线性代数中的正定矩阵、实对称矩阵、矩阵特征值分解以及矩阵 SVD 分解进行总结。

如果你对这篇文章可感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。


正定矩阵

概念

对于任意非零向量 x \textbf{x} x,若 x T A x > 0 \textbf{x}^T\textbf{\textit{A}}\textbf{x}>0 xTAx>0 恒成立,则矩阵 A \textbf{\textit{A}} A 为正定矩阵;若 x T A x ≥ 0 \textbf{x}^T\textbf{\textit{A}}\textbf{x}\geq 0 xTAx0 恒成立,则矩阵 A \textbf{\textit{A}} A 为半正定矩阵。

其他充要条件

  • 充要条件1: 矩阵 A \textbf{\textit{A}} A 的全部特征值都是正数
    • 推论: A \textbf{\textit{A}} A 正定,则 ∣ A ∣ > 0 |\textbf{\textit{A}}|>0 A>0,即 A \textbf{\textit{A}} A 可逆(有时会根据矩阵正定来判断是否可逆)
    • 推论: A \textbf{\textit{A}} A 正定,则 A \textbf{\textit{A}} A 与单位阵合同,即存在可逆阵 C \textbf{\textit{C}} C,使得 C T AC = E \textbf{\textit{C}}^T\textbf{\textit{A}}\textbf{\textit{C}}=\textbf{\textit{E}} CTAC=E 成立
  • 充要条件2: 矩阵 A \textbf{\textit{A}} A 的各阶顺序主子式都是正数,即 Δ i > 0 \Delta_i>0 Δi>0
    • 其中 Δ i \Delta_i Δi 表示矩阵 A \textbf{\textit{A}} A i i i 行与前 i i i 列组成的子矩阵的行列式的值

实对称矩阵

概念

矩阵为方阵,其中元素均为实数,且 A = A T \textbf{\textit{A}}=\textbf{\textit{A}}^T A=AT

性质

  • 性质1: 实对称矩阵的特征值都是实数。
    • 假设 λ \lambda λ x \textbf{x} x 分别为矩阵 A \textbf{\textit{A}} A 的特征值、特征向量,即 A x = λ x \textbf{\textit{A}}\textbf{x}=\lambda \textbf{x} Ax=λx
    • 等式两边取共轭,即 a + b i ‾ = a − b i \overline{a+bi}=a-bi a+bi=abi A ‾ x ‾ = λ ‾ x ‾ \overline{\textbf{\textit{A}}}\overline{\textbf{x}}=\overline{\lambda} \overline{\textbf{x}} Ax=λx A \textbf{\textit{A}} A 是实对称矩阵,因此 A = A T = A ‾ \textbf{\textit{A}}=\textbf{\textit{A}}^T=\overline{\textbf{\textit{A}}} A=AT=A,即 A x ‾ = λ ‾ x ‾ \textbf{\textit{A}}\overline{\textbf{x}}=\overline{\lambda} \overline{\textbf{x}} Ax=λx
    • 等式两边取转置,则 x T A = λ x T \textbf{x}^T\textbf{\textit{A}}=\lambda \textbf{x}^T xTA=λxT
    • x T A x ‾ = λ ‾ x T x ‾ = λ x T x ‾ \textbf{x}^T\textbf{\textit{A}}\overline{x}=\overline{\lambda}\textbf{x}^T\overline{\textbf{x}}=\lambda \textbf{x}^T\overline{\textbf{x}} xTAx=λxTx=λxTx
    • ( λ − λ ‾ ) ∥ x ∥ 2 2 = 0 (\lambda-\overline{\lambda})\left\|\textbf{x}\right\|_2^2=0 (λλ)x22=0,由于 ∥ x ∥ 2 2 > 0 \left\|\textbf{x}\right\|_2^2>0 x22>0,因此 λ = λ ‾ \lambda=\overline{\lambda} λ=λ λ \lambda λ 为实数
  • 性质2: 实对称矩阵不同特征值所对应的特征向量必定正交。
    • 假设 A x 1 = λ 1 x 1 \textbf{\textit{A}}\textbf{x}_1=\lambda_1 \textbf{x}_1 Ax1=λ1x1 A x 2 = λ 1 x 2 \textbf{\textit{A}}\textbf{x}_2=\lambda_1 \textbf{x}_2 Ax2=λ1x2 成立
    • x 1 T A = λ 1 x 1 T \textbf{x}_1^T\textbf{\textit{A}}=\lambda_1 \textbf{x}_1^T x1TA=λ1x1T
    • x 1 T A x 2 = λ 1 x 1 T x 2 = λ 2 x 1 T x 2 \textbf{x}_1^T\textbf{\textit{A}}\textbf{x}_2=\lambda_1 \textbf{x}_1^T\textbf{x}_2=\lambda_2\textbf{x}_1^T\textbf{x}_2 x1TAx2=λ1x1Tx2=λ2x1Tx2
    • ( λ 1 − λ 2 ) x 1 T x 2 = 0 (\lambda_1-\lambda_2)\textbf{x}_1^T\textbf{x}_2=0 (λ1λ2)x1Tx2=0,因此 x 1 \textbf{x}_1 x1 x 2 \textbf{x}_2 x2 正交
  • 性质3: 实对称矩阵相同特征值所对应的特征向量必定线性无关。
    • 证明较繁琐,不详细展开
    • 线性无关的向量可以通过施密特正交化转为正交向量
      • 对于线性无关向量组 x 1 , x 2 , . . . , x n \textbf{x}_1,\textbf{x}_2,...,\textbf{x}_n x1,x2,...,xn,转为正交向量组 y 1 , y 2 , . . . , y n \textbf{y}_1,\textbf{y}_2,...,\textbf{y}_n y1,y2,...,yn
      • y 1 = x 1 \textbf{y}_1=\textbf{x}_1 y1=x1
      • y i = x i − ∑ j = 1 i − 1 x i T y j y j T y j y j \textbf{y}_i=\textbf{x}_i-\sum\limits_{j=1}^{i-1}\displaystyle\frac{\textbf{x}_i^T\textbf{y}_j}{\textbf{y}_j^T\textbf{y}_j}\textbf{y}_j yi=xij=1i1yjTyjxiTyjyj
    • 由于新的正交向量都是原来线性无关向量的线性组合,而原先的线性无关向量对应的特征值均相同,因此新的正交向量也均为该相同特征值对应的特征向量
  • 性质4: 任何一个实对称矩阵,都可以正交对角化。
    • 正交对角化,即存在一个正交矩阵 Q ( Q T = Q − 1 ) \textbf{\textit{Q}}(\textbf{\textit{Q}}^T=\textbf{\textit{Q}}^{-1}) Q(QT=Q1) 使得 Q T AQ = D \textbf{\textit{Q}}^T\textbf{\textit{A}}\textbf{\textit{Q}}=\textbf{\textit{D}} QTAQ=D,其中 D \textbf{\textit{D}} D 是一个对角矩阵
    • 实对称矩阵,一定有 n n n 个解,因为实对称矩阵特征值都是实数,因此一共有 n n n 个实特征值(包括重特征值)—— 性质 1 1 1
    • 不同特征值对应的特征向量正交,相同特征值也一定存在对应的正交向量 —— 性质 2 , 3 2,3 2,3
    • 实对称矩阵,一定有 n n n 个正交特征向量,因此可以特征值分解,即该性质成立

矩阵特征值分解

概念

n ∗ n n*n nn 的方阵 A \textbf{\textit{A}} A,由 A x = λ x \textbf{\textit{A}}\textbf{x}=\lambda \textbf{x} Ax=λx 可以得到 AV = V Λ \textbf{\textit{A}}\textbf{\textit{V}}=\textbf{\textit{V}}\Lambda AV=VΛ

  • 如果方阵 A \textbf{\textit{A}} A n n n 个线性无关的特征向量,则 V \textbf{\textit{V}} V 可逆
  • A = V Λ V − 1 \textbf{\textit{A}}=\textbf{\textit{V}}\Lambda\textbf{\textit{V}}^{-1} A=VΛV1
  • 其中矩阵 V \textbf{\textit{V}} V 的列为方阵 A \textbf{\textit{A}} A 的特征向量, Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) , λ i ≥ λ i + 1 \Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n),\lambda_i\geq \lambda_{i+1} Λ=diag(λ1,λ2,...,λn),λiλi+1

矩阵 SVD 分解

概念

任意一个矩阵 A \textbf{\textit{A}} A 都可以分解为 A = U Σ V T \textbf{\textit{A}}=\textbf{\textit{U}}\Sigma\textbf{\textit{V}}^T A=UΣVT,其中 U , V \textbf{\textit{U}},\textbf{\textit{V}} U,V 均为正交单位矩阵, Σ \Sigma Σ 为对角矩阵。

证明

  • A T A = ( U Σ V T ) T U Σ V T = V Σ 2 V T \textbf{\textit{A}}^T\textbf{\textit{A}}=(\textbf{\textit{U}}\Sigma\textbf{\textit{V}}^T)^T\textbf{\textit{U}}\Sigma\textbf{\textit{V}}^T=\textbf{\textit{V}}\Sigma^2\textbf{\textit{V}}^T ATA=(UΣVT)TUΣVT=VΣ2VT,由于 A T A \textbf{\textit{A}}^T\textbf{\textit{A}} ATA 为实对称矩阵,因此 V \textbf{\textit{V}} V 为矩阵 A T A \textbf{\textit{A}}^T\textbf{\textit{A}} ATA 对应特征向量组成的正交单位阵。
  • A A T = U Σ V T ( U Σ V T ) T = U Σ 2 U T \textbf{\textit{A}}\textbf{\textit{A}}^T=\textbf{\textit{U}}\Sigma\textbf{\textit{V}}^T(\textbf{\textit{U}}\Sigma\textbf{\textit{V}}^T)^T=\textbf{\textit{U}}\Sigma^2\textbf{\textit{U}}^T AAT=UΣVT(UΣVT)T=UΣ2UT,由于 A A T \textbf{\textit{A}}\textbf{\textit{A}}^T AAT 为实对称矩阵,因此 U \textbf{\textit{U}} U 矩阵 A A T \textbf{\textit{A}}\textbf{\textit{A}}^T AAT 对应特征向量组成的正交单位阵。
  • AV = U Σ \textbf{\textit{A}}\textbf{\textit{V}}=\textbf{\textit{U}}\Sigma AV=UΣ,其中 Σ \Sigma Σ 为对角阵,因此 A v i = σ i u i \textbf{\textit{A}}\textbf{v}_i=\sigma_i\textbf{u}_i Avi=σiui,由此可以得到对角矩阵 Σ \Sigma Σ,其中 σ i \sigma_i σi 就是奇异值。
  • A m ∗ n = U m ∗ m Σ m ∗ n V n ∗ n \textbf{\textit{A}}_{m*n}=\textbf{\textit{U}}_{m*m}\Sigma_{m*n}\textbf{\textit{V}}_{n*n} Amn=UmmΣmnVnn

你可能感兴趣的:(大学课程笔记(重要),#,线性代数,正定矩阵,实对称矩阵,矩阵特征值分解,矩阵SVD分解,矩阵正交对角化)