Petrozavodsk Winter-2018. Carnegie Mellon U Contest. A. Mines 线段树建图+强连通分量

Problem A. Mines
Input file: standard input
Output file: standard output
Time limit: 10 seconds

   
There are N mines on the number line. Mine i is at position pi and has an explosion radius ri. It initially
costs ci to detonate. If mine i is detonated, an explosion occurs on interval [pi - ri; pi + ri] and all mines
in that interval (inclusive of the endpoints) are detonated for free, setting off a chain reaction. You need
to process Q operations of the form (m; c): Change the cost of detonating mine m to c. Output the
minimum cost required to detonate all mines after each change. Note that each change is permanent.
Input
The first line contains integers N and Q (1 ≤ N; Q ≤ 200 000). The next N lines contain information on
the mines. The i-th of these lines contains integers pi, ri and ci (1 ≤ pi; ri; ci ≤ 109). The next Q lines
each contains space separated integers m and c (1 ≤ m ≤ N, 1 ≤ c ≤ 109).

Output
Output Q lines. The i-th line should contain the minimum cost required to detonate all mines after the
i-th operation

Example

standard input standard output
4 2
1 1 1
6 3 10
8 2 5
10 2 3
1 1
4 11
4 6


 

 

 

n个矿井分布在一维坐标轴上,分别有不同的爆炸半径和爆炸成本。花费Ci引爆其中一个会引起连锁反应,现在Q次操作,每次改变一个矿井的花费,要求对于每次操作输出最少花费多少引爆所有矿井。

 

建图很容易想,但是边数太多。我们可以把点先按位置排序,再用线段树建图,树上每个点代表一段连续区间所有的点。这样,边数被压缩到nlogn的级别。接着就好求了,只要把图缩点之后,找到DAG当中入度为0的点,在这些点代表的强连通分量当中取一个花费最小的点就好。至于Q次操作,可以对这些强连通分量当中的所有点以及花费用set维护。

时间复杂度O(nlogn)

 

双向dfs求强连通分量的过程:

1.以任意一个点为源点,进行dfs,并将记录经过点的时间戳,时间戳逐渐增加。 
2.进行dfs后,将图中的边的方向反向。寻找时间戳最小的点为源点(就是上面源点)进行dfs。这时,它所能达到的点集就是一个连通分量。并记录搜索过的点 
3.在没有搜索过的点中以时间戳最小的点为源点,继续dfs,搜索结果同上 
4.不断重复3,直到所有点都搜索过。 

 

顺便吐槽一下CSDN,新编辑器居然不能改字体大小了,很多功能找不到,越来越烂了,是逼我转Markdown吗

 

#include 
#include 
#include 
#include  
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define pb push_back 
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef pair pp;
const int maxn=1000005,inf=0x3f3f3f3f;
const ll llinf=0x3f3f3f3f3f3f3f3f;
const ld pi=acos(-1.0L);
int l[maxn],r[maxn],q[maxn],f[maxn];
bool vis[maxn],z[maxn];
pp b[maxn];
set s[maxn];
vector v[maxn],vi[maxn],v1[maxn];
int n,num,cnt,c;

struct node{
	int p,r,c;
};
node a[maxn];

int findl(int pos) {
	int l=1,r=n,mid,ans=-1;
	while (l<=r) {
		mid=(l+r)/2;
		if (b[mid].firstpos) r=mid-1; else ans=mid,l=mid+1;
	}
	return ans;
}

void addedge(int x,int y) {
	v[x].pb(y);
	v1[y].pb(x);
}

void newedge(int x,int y) {
	vi[x].pb(y);
//	cout << x << ' ' << y << endl;
}

int build(int lc,int rc) {
	if (lc==rc) {
		return b[lc].second;
	}
	int now=++num;
	l[now]=build(lc,(lc+rc)/2);
	r[now]=build((lc+rc)/2+1,rc);
	addedge(now,l[now]);
	addedge(now,r[now]);
	return now;
}

void buildedge(int now,int lc,int rc,int f,int nl,int nr) {
	if (nl>=lc&&rc>=nr) {
		addedge(f,now);
		return;
	}
	int mid=(nl+nr)/2;
	if (lc<=mid) buildedge(l[now],lc,rc,f,nl,mid);
	if (rc>mid) buildedge(r[now],lc,rc,f,mid+1,nr);
}

void dfs1(int now) {
	vis[now]=1;
	int size=v[now].size();
	for (int i=0;ifirst;
	int x,y;
	for (i=1;i<=qn;i++) {
		scanf("%d%d",&x,&y);
		if (z[f[x]]) {
			printf("%lld\n",ans);
			continue;
		}
		ans-=(ll)s[f[x]].begin()->first;
		s[f[x]].erase(pp(a[x].c,x));
		a[x].c=y;
		s[f[x]].insert(pp(y,x));
		ans+=(ll)s[f[x]].begin()->first;
		printf("%lld\n",ans);
	}
	return 0;
}

 

你可能感兴趣的:(线段树,tarjan/2-SAT)