JackSon学习笔记(一)

概述

Jackson框架是基于Java平台的一套数据处理工具,被称为“最好的Java Json解析器”。 
Jackson框架包含了3个核心库:streaming,databind,annotations.Jackson还包含了其它数据处理类库,此外不作说明。
Jackson版本: 1.x (目前版本从1.1~1.9)与2.x。1.x与2.x从包的命名上可以看出来,1.x的类库中,包命名以:org.codehaus.jackson.xxx开头,而2.x类库中包命令:com.fastxml.jackson.xxx开头

Jackson Home Page:https://github.com/FasterXML/jackson
Jackson Wiki:http://wiki.fasterxml.com/JacksonHome
Jackson doc: https://github.com/FasterXML/jackson-docs
Jackson Download Page:http://wiki.fasterxml.com/JacksonDownload


准备工作

本文所有程序都基于JDK1.7,依赖jackon的三个核心类库:
jackson-core-2.5.3.jar
jackson-annotations-2.5.3.jar
jackson-databind-2.5.3.jar


Jackson处理Json

Jackson提供了三种可选的Json处理方法:流式API(Streaming API) 、树模型(Tree Model)、数据绑定(Data Binding)。从使用角度来看,比较一下这三种处理Json的方式的特性:

Streaming API:是效率最高的处理方式(开销低、读写速度快,但程序编写复杂度高)
Tree Model:是最灵活的处理方式
Data Binding:是最常用的处理方式

下面我们通过例子程序分别使用DataBinding,TreeModel,Streaming的方式来创建和解析Json字符串

1.DataBinding处理Json

Jackson支持Java对象与Json之间的相互转化。java对象序列化为json字符串,json字符串也可以反序列化为相同的java对象。

(1)java对象转化成json:
Province.java
package com.jackson.json.databinding;

public class Province {
	public String name;
	public int population;
	public String[] city;	
}
Country.java
package com.jackson.json.databinding;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Country {
	// 注意:被序列化的bean的private属性字段需要创建getter方法或者属性字段应该为public
	private String country_id;
	private Date birthDate;
	private List nation = new ArrayList();
	private String[] lakes;
	private List provinces = new ArrayList();
	private Map traffic = new HashMap();

	public Country() {
		// TODO Auto-generated constructor stub
	}

	public Country(String countryId) {
		this.country_id = countryId;
	}

	public String getCountry_id() {
		return country_id;
	}

	public void setCountry_id(String country_id) {
		this.country_id = country_id;
	}

	public Date getBirthDate() {
		return birthDate;
	}

	public void setBirthDate(Date birthDate) {
		this.birthDate = birthDate;
	}

	public List getNation() {
		return nation;
	}

	public void setNation(List nation) {
		this.nation = nation;
	}

	public String[] getLakes() {
		return lakes;
	}

	public void setLakes(String[] lakes) {
		this.lakes = lakes;
	}

	public Integer get(String key) {
		return traffic.get(key);
	}

	public Map getTraffic() {
		return traffic;
	}

	public void setTraffic(Map traffic) {
		this.traffic = traffic;
	}

	public void addTraffic(String key, Integer value) {
		traffic.put(key, value);
	}

	public List getProvinces() {
		return provinces;
	}

	public void setProvinces(List provinces) {
		this.provinces = provinces;
	}

	@Override
	public String toString() {
		return "Country [country_id=" + country_id + ", birthDate=" + birthDate
				+ ", nation=" + nation + ", lakes=" + Arrays.toString(lakes)
				+ ", province=" + provinces + ", traffic=" + traffic + "]";
	}

}
JavaBeanSerializeToJson.java
package com.jackson.json.databinding;

import java.io.File;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.List;

import com.fasterxml.jackson.annotation.JsonInclude.Include;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.SerializationFeature;

public class JavaBeanSerializeToJson {

	public static void convert() throws Exception {
		// 使用ObjectMapper来转化对象为Json
		ObjectMapper mapper = new ObjectMapper();
		// 添加功能,让时间格式更具有可读性
		SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
		mapper.setDateFormat(dateFormat);

		Country country = new Country("China");
		country.setBirthDate(dateFormat.parse("1949-10-01"));
		country.setLakes(new String[] { "Qinghai Lake", "Poyang Lake",
				"Dongting Lake", "Taihu Lake" });

		List nation = new ArrayList();
		nation.add("Han");
		nation.add("Meng");
		nation.add("Hui");
		nation.add("WeiWuEr");
		nation.add("Zang");
		country.setNation(nation);

		Province province = new Province();
		province.name = "Shanxi";
		province.population = 37751200;
		Province province2 = new Province();
		province2.name = "ZheJiang";
		province2.population = 55080000;
		List provinces = new ArrayList();
		provinces.add(province);
		provinces.add(province2);
		country.setProvinces(provinces);
		
		country.addTraffic("Train(KM)", 112000);
		country.addTraffic("HighWay(KM)", 4240000);
		// 为了使JSON视觉上的可读性,增加一行如下代码,注意,在生产中不需要这样,因为这样会增大Json的内容
		mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
		// 配置mapper忽略空属性
		mapper.setSerializationInclusion(Include.NON_EMPTY);
		// 默认情况,Jackson使用Java属性字段名称作为 Json的属性名称,也可以使用Jackson annotations(注解)改变Json属性名称
		mapper.writeValue(new File("country.json"), country);
	}

	public static void main(String[] args) throws Exception {
		convert();
	}

}
程序运行后生成country.json,内容如下:
{
  "country_id" : "China",
  "birthDate" : "1949-10-01",
  "nation" : [ "Han", "Meng", "Hui", "WeiWuEr", "Zang" ],
  "lakes" : [ "Qinghai Lake", "Poyang Lake", "Dongting Lake", "Taihu Lake" ],
  "provinces" : [ {
    "name" : "Shanxi",
    "population" : 37751200
  }, {
    "name" : "ZheJiang",
    "population" : 55080000
  } ],
  "traffic" : {
    "HighWay(KM)" : 4240000,
    "Train(KM)" : 112000
  }
}

(2)Json字符串反序列化为java对象:
package com.jackson.json.databinding;

import java.io.File;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Iterator;
import java.util.List;

import com.fasterxml.jackson.core.JsonParseException;
import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.JsonMappingException;
import com.fasterxml.jackson.databind.ObjectMapper;

/**
 * 将Json字符串反序列化为Java对象
 */
public class JsonDeserializeToJava {
	
	public static void main(String[] args) throws Exception {
		//ObjectMapper类用序列化与反序列化映射器
		ObjectMapper mapper = new ObjectMapper();
		File json = new File("country.json");
		//当反序列化json时,未知属性会引起的反序列化被打断,这里我们禁用未知属性打断反序列化功能,
		//因为,例如json里有10个属性,而我们的bean中只定义了2个属性,其它8个属性将被忽略
		mapper.disable(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);
		
		//从json映射到java对象,得到country对象后就可以遍历查找,下面遍历部分内容,能说明问题就可以了
		Country country = mapper.readValue(json, Country.class);
		System.out.println("country_id:"+country.getCountry_id());
		//设置时间格式,便于阅读
		SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd");
		String birthDate = dateformat.format(country.getBirthDate());
		System.out.println("birthDate:"+birthDate);
		
		List provinces = country.getProvinces();
		for (Province province : provinces) {
			System.out.println("province:"+province.name + "\n" + "population:"+province.population);
		}
	}
}
程序运行结果:
country_id:China
birthDate:1949-10-01
province:Shanxi
population:37751200
province:ZheJiang
population:55080000

2.Tree Model处理Json

(1)tree model生成json:

package com.jackson.json.treemodel;

import java.io.File;
import java.io.FileWriter;

import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.SerializationFeature;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.JsonNodeFactory;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class SerializationExampleTreeModel {
	
	public static void main(String[] args) throws Exception {
		//创建一个节点工厂,为我们提供所有节点
		JsonNodeFactory factory = new JsonNodeFactory(false);
		//创建一个json factory来写tree modle为json
		JsonFactory jsonFactory = new JsonFactory();
		//创建一个json生成器
		JsonGenerator generator = jsonFactory.createGenerator(new FileWriter(new File("country2.json")));
		//注意,默认情况下对象映射器不会指定根节点,下面设根节点为country
		ObjectMapper mapper = new ObjectMapper();
		ObjectNode country = factory.objectNode();
		
		country.put("country_id", "China");
		country.put("birthDate", "1949-10-01");
		
		//在Java中,List和Array转化为json后对应的格式符号都是"obj:[]"
		ArrayNode nation = factory.arrayNode();
		nation.add("Han").add("Meng").add("Hui").add("WeiWuEr").add("Zang");
		country.set("nation", nation);
		
		ArrayNode lakes = factory.arrayNode();
		lakes.add("QingHai Lake").add("Poyang Lake").add("Dongting Lake").add("Taihu Lake");
		country.set("lakes", lakes);
		
		ArrayNode provinces = factory.arrayNode();
		ObjectNode province = factory.objectNode();
		ObjectNode province2 = factory.objectNode();
		province.put("name","Shanxi");
		province.put("population", 37751200);
		province2.put("name","ZheJiang");
		province2.put("population", 55080000);
		provinces.add(province).add(province2);
		country.set("provinces", provinces);
		
		ObjectNode traffic = factory.objectNode();
		traffic.put("HighWay(KM)", 4240000);
		traffic.put("Train(KM)", 112000);
		country.set("traffic", traffic);
		
		mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
		mapper.writeTree(generator, country);
	}

}

程序运行生成country2.json,内容如下:

{"country_id":"China","birthDate":"1949-10-01","nation":["Han","Meng","Hui","WeiWuEr","Zang"],"lakes":["QingHai Lake","Poyang Lake","Dongting Lake","Taihu Lake"],"provinces":[{"name":"Shanxi","population":37751200},{"name":"ZheJiang","population":55080000}],"traffic":{"HighWay(KM)":4240000,"Train(KM)":112000}}

(2) json字符串反序列化为tree mode

DeserializationExampleTreeModel1.java,请注意观察程序中不同的JsonNode的类型变化

package com.jackson.json.treemodel;

import java.io.File;
import java.util.Iterator;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

public class DeserializationExampleTreeModel1 {

	public static void main(String[] args) throws Exception {
		ObjectMapper mapper = new ObjectMapper();
		// Jackson提供一个树节点被称为"JsonNode",ObjectMapper提供方法来读json作为树的JsonNode根节点
		JsonNode node = mapper.readTree(new File("country2.json"));
		// 看看根节点的类型
		System.out.println("node JsonNodeType:"+node.getNodeType());
		// 是不是一个容器
		System.out.println("node is container Node ? "+node.isContainerNode());
		// 得到所有node节点的子节点名称
		System.out.println("---------得到所有node节点的子节点名称-------------------------");
		Iterator fieldNames = node.fieldNames();
		while (fieldNames.hasNext()) {
			String fieldName = fieldNames.next();
			System.out.print(fieldName+" ");
		}
		System.out.println("\n-----------------------------------------------------");
		// as.Text的作用是有值返回值,无值返回空字符串
		JsonNode country_id = node.get("country_id");
		System.out.println("country_id:"+country_id.asText() + " JsonNodeType:"+country_id.getNodeType());
		
		JsonNode birthDate = node.get("birthDate");
		System.out.println("birthDate:"+birthDate.asText()+" JsonNodeType:"+birthDate.getNodeType());
		
		JsonNode nation = node.get("nation");
		System.out.println("nation:"+ nation+ " JsonNodeType:"+nation.getNodeType());
		
		JsonNode lakes = node.get("lakes");
		System.out.println("lakes:"+lakes+" JsonNodeType:"+lakes.getNodeType());

		JsonNode provinces = node.get("provinces");
		System.out.println("provinces JsonNodeType:"+provinces.getNodeType());

		boolean flag = true;
		for (JsonNode provinceElements : provinces) {
			//为了避免provinceElements多次打印,用flag控制打印,能体现provinceElements的JsonNodeType就可以了
			if(flag){
				System.out.println("provinceElements JsonNodeType:"+provinceElements.getNodeType());
				System.out.println("provinceElements is container node? "+provinceElements.isContainerNode());
				flag = false;
			}
			Iterator provinceElementFields = provinceElements.fieldNames();
			while (provinceElementFields.hasNext()) {
				String fieldName = (String) provinceElementFields.next();
				String province;
				if ("population".equals(fieldName)) {
					province = fieldName + ":" + provinceElements.get(fieldName).asInt();
				}else{
					province = fieldName + ":" + provinceElements.get(fieldName).asText();
				}
				System.out.println(province);
			}
		}
	}
}

程序运行后打印结果如下:

node JsonNodeType:OBJECT
node is container Node ? true
---------得到所有node节点的子节点名称-------------------------
country_id birthDate nation lakes provinces traffic 
-----------------------------------------------------
country_id:China JsonNodeType:STRING
birthDate:1949-10-01 JsonNodeType:STRING
nation:["Han","Meng","Hui","WeiWuEr","Zang"] JsonNodeType:ARRAY
lakes:["QingHai Lake","Poyang Lake","Dongting Lake","Taihu Lake"] JsonNodeType:ARRAY
provinces JsonNodeType:ARRAY
provinceElements JsonNodeType:OBJECT
provinceElements is container node? true
name:Shanxi
population:37751200
name:ZheJiang
population:55080000


在来看一下DeserializationExampleTreeModel2.java,本例中使用JsonNode.path的方法,path方法类似于DeserializationExampleTreeModel1.java中使用的get方法,

但当node不存在时,get方法返回null,而path返回MISSING类型的JsonNode

package com.jackson.json.treemodel;

import java.io.File;
import java.io.IOException;
import java.util.Iterator;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;

public class DeserializationExampleTreeModle2 {
	
	public static void main(String[] args) throws JsonProcessingException, IOException{
		ObjectMapper mapper = new ObjectMapper();
		JsonNode node = mapper.readTree(new File("country2.json"));
		//path方法获取JsonNode时,当对象不存在时,返回MISSING类型的JsonNode
		JsonNode missingNode = node.path("test");
		if(missingNode.isMissingNode()){
			System.out.println("JsonNodeType : " + missingNode.getNodeType());
		}

		System.out.println("country_id:"+node.path("country_id").asText());
		
		JsonNode provinces = node.path("provinces");
		for (JsonNode provinceElements : provinces) {
			Iterator provincesFields = provinceElements.fieldNames();
			while (provincesFields.hasNext()) {
				String fieldName = (String) provincesFields.next();
				String province;
				if("name".equals(fieldName)){
					province = fieldName +":"+ provinceElements.path(fieldName).asText();
				}else{
					province = fieldName +":"+ provinceElements.path(fieldName).asInt();
				}
				System.out.println(province);
			}
		}
	}

}
程序运行打印结果:
JsonNodeType : MISSING
country_id:China
name:Shanxi
population:37751200
name:ZheJiang
population:55080000

3.Stream处理Json

(1)stream生成json

package com.jackson.json.streaming;

import java.io.File;
import java.io.FileWriter;
import java.io.Exception;

import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;

public class StreamGeneratorJson {
	
	public static void main(String[] args) throws Exception {
		JsonFactory factory = new JsonFactory();
		//从JsonFactory创建一个JsonGenerator生成器的实例
		JsonGenerator generator = factory.createGenerator(new FileWriter(new File("country3.json")));
		
		generator.writeStartObject();
		generator.writeFieldName("country_id");
		generator.writeString("China");
		generator.writeFieldName("provinces");
		generator.writeStartArray();
		generator.writeStartObject();
		generator.writeStringField("name", "Shanxi");
		generator.writeNumberField("population", 33750000);
		generator.writeEndObject();
		generator.writeEndArray();
		generator.writeEndObject();
		
		generator.close();
	}

}
程序运行后生成country3.json文件内容:
{"country_id":"China","provinces":[{"name":"Shanxi","population":33750000}]}

(2)stream解析json:
现在adgcountry3.json,我们用Streaming API的方式来解析上面的Json,并查找json中population的值。
package com.jackson.json.streaming;

import java.io.File;
import java.io.IOException;

import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonParseException;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonToken;

/*Jackson API提供了token对每个Json对象,例如,Json开始符号“{”是token指向的第一个解析的对象,
 key:value键值对是另一个单独的对象。这个API很强大,但也需要编写大量代码。不推荐使用,平时更多的是使用DataBinding和TreeModel来处理json
 */
public class StreamParserJson {
	public static void main(String[] args) throws JsonParseException,
			IOException {
		JsonFactory factory = new JsonFactory();
		// 从JsonFactory创建JsonParser解析器的实例
		JsonParser parser = factory.createParser(new File("country3.json"));

		while (!parser.isClosed()) {
			// 得到一个token,第一次遍历时,token指向json文件中第一个符号"{"
			JsonToken token = parser.nextToken();
			if (token == null) {
				break;
			}
			// 我们只查找 country3.json中的"population"字段的值,能体现解析的流程就可以了
			// 当key是provinces时,我们进入provinces,查找population
			if (JsonToken.FIELD_NAME.equals(token)
					&& "provinces".equals(parser.getCurrentName())) {
				token = parser.nextToken();
				if (!JsonToken.START_ARRAY.equals(token)) {
					break;
				}
				// 此时,token指向的应该是"{"
				token = parser.nextToken();
				if (!JsonToken.START_OBJECT.equals(token)) {
					break;
				}
				while (true) {
					token = parser.nextToken();
					if (token == null) {
						break;
					}
					if (JsonToken.FIELD_NAME.equals(token)
							&& "population".equals(parser.getCurrentName())) {
						token = parser.nextToken();
						System.out.println(parser.getCurrentName() + " : "
								+ parser.getIntValue());
					}
				}
			}
		}
	}

}
程序运行后,在控制台打印结果如下:
population : 33750000

总结

上面的例子中,分别用3种方式处理Json,我的体会大致如下:

Stream API方式是开销最低、效率最高,但编写代码复杂度也最高,在生成Json时,需要逐步编写符号和字段拼接json,在解析Json时,需要根据token指向也查找json值,生成和解析json都不是很方便,代码可读性也很低。
Databinding处理Json是最常用的json处理方式,生成json时,创建相关的java对象,并根据json内容结构把java对象组装起来,最后调用writeValue方法即可生成json,
解析时,就更简单了,直接把json映射到相关的java对象,然后就可以遍历java对象来获取值了。
TreeModel处理Json,是以树型结构来生成和解析json,生成json时,根据json内容结构,我们创建不同类型的节点对象,组装这些节点生成json。解析json时,它不需要绑定json到java bean,根据json结构,使用path或get方法轻松查找内容。

学习参考: http://www.cnblogs.com/lee0oo0/articles/2652528.html

你可能感兴趣的:(Json)