本篇将从架构角度分析binder, 介绍binder机制的层次划分,并着重分析驱动适配层和Binder核心框架层。
Binder层次划分如下图所示:
正如大家所知道的,Binder机制是需要Linux内核支持的,Android因此添加了binder驱动,binder 设备节点为/dev/binder,主设备号为10,binder 驱动程序在内核中的头文件和代码路径如下:
kernel/drivers/staging/binder.h
kernel/drivers/staging/binder.c
binder驱动程序的主要作用是完成实际的binder数据传输。
驱动实现时,主要通过binder_ioctl函数与用户空间的进程交换数据(用户进程与驱动交互时使用ioctl函数,对应驱动源码的binder_ioctl函数)。BINDDER_WRITE_READ命令字用来读写数据,数据包中有一个cmd域用于区分不同的请求。binder_thread_write函数用于发送请求,binder_thread_read函数用于读取结果。在binder_thread_write函数中调用binder_transaction函数来转发请求并返回结果。当收到请求时,binder_transaction函数会根据对象的handle找到对象所在的进程,如果handle为0,则认为对象是context_mgr,把请求发给context_mgr所在的进程。所有的binder请求对象全部放到一个RB树中,最后把请求放到目标进程的队列中,等待目标进程读取。
A进程如果要使用B进程的服务,B进程首先要注册此服务,A进程通过service mananger获取该服务的handle,通过这个handle,A进程就可以使用该服务了。A进程使用B进程的服务还意味着二者遵循相同的协议,这个协议反映在代码上就是二者要实现IBinder接口。
Binder的本质就是要把对象a从一个进程B映射到另一个进程A中,进程A中调用对象a的方法象调本地方法一样。但实际上进程B和进程A有不同的地址空间,对象a只有在进程B里有意义,但是驱动层可将进程B的对象a映射到进程A,得到对象a在进程A的表示,称之为handle,也叫句柄。这样,对象a在进程B的地址空间里有一个实际地址,在进程A里有对应的句柄,驱动会将这个句柄和对象a的实际地址映射起来。对象a对于进程B来说是本地对象,对象a对于进程A来说是远程对象,而handle对于进程A来说是对象a在进程A的引用。
适配层使用binder驱动时使用了内存映射技术,故此进程间传输数据时只需拷贝一次,传统的IPC需拷贝两次,因此使用binder可大大提高IPC通信效率。
主要是IPCThreadState.cpp和ProcessState.cpp,源码位于frameworks/native/libs/binder
这两个类都采用了单例模式,主要负责和驱动直接交互。
ProcessState负责打开binder设备,进行一些初始化设置并做内存映射
IPCThreadState负责直接和binder设备通信,使用ioctl读写binder驱动数据
后面将详细分析ProcessState和IPCThreadState。
Binder核心框架主要是IBinder及它的两个子类,即BBinder和BpBinder,分别代表了最基本的服务端及客户端。
binder service服务端实体类会继承BnInterface,而BnInterface会继承自BBinder,利用servicemananger将BBinder对象在servicemananger注册。
客户端程序和驱动交互时只能得到远程对象的句柄handle,然后会调用ProcessState的getStrongProxyForHandle函数,利用句柄handle建立BpBinder对象,然后将它转为IBinder指针返回给调用者。这样客户端每次调用IBinder指针的transact方法,其实是执行BpBinder的transact方法。
本地Binder框架层包含以下类(frameworks/native/libs/binder):
RefBase,IInterface,BnInterface,BpInterface,BpRefBase,Parcel 等等
Java框架层包含以下类(frameworks/base/core/java/android/os):
IBinder,Binder,IInterface,ServiceManagerNative,ServiceManager,BinderInternal,IServiceManager,ServiceManagerProxy
Java框架层的类的部分方法的实现在本地代码里(frameworks/base/core/jni)。
后续博客会详细分析本地binder框架和Java层 binder框架各自的类关系。
从Binder入门系列我们也知道,最上层也有本地和Java之分,Java层服务端从Binder继承并实现服务接口,Java层客户端直接实现服务接口即可,而本地服务端需继承自BnInterface,本地客户端继承自BpInterface。
后续博客分析本地binder框架和Java层 binder框架时会给出更详尽的类关系。
ProcessState负责打开binder设备,进行一些初始化设置。
ProcessState的类图如下图所示:
我们通常在binder service的服务端象下面一样使用ProcessState:
//初始化单例,其实不调用该语句也能正常运行
sp < ProcessState > proc(ProcessState::self());
//启动线程池
ProcessState::self()->startThreadPool();
注意binder service服务端提供binder service时,是以线程池的形式提供服务,也就说可以同时启动多个线程来提供服务,可以通过如下方式来启动多个线程:
//设置线程池支持的最大线程个数
ProcessState::self()->setThreadPoolMaxThreadCount(4);
//启动一个服务线程
ProcessState::self()->spawnPooledThread(false);
//启动一个服务线程
ProcessState::self()->spawnPooledThread(false);
接下来我们分析ProcessState的构造函数:
ProcessState::ProcessState()
: mDriverFD(open_driver()) //打开binder设备,并将mDriverFD设置为打开的文件符
, mVMStart(MAP_FAILED)
, mManagesContexts(false)
, mBinderContextCheckFunc(NULL)
, mBinderContextUserData(NULL)
, mThreadPoolStarted(false) //构造时,默认并未启动线程池
, mThreadPoolSeq(1)
{
if (mDriverFD >= 0) {
// XXX Ideally, there should be a specific define for whether we
// have mmap (or whether we could possibly have the kernel module
// availabla).
#if !defined(HAVE_WIN32_IPC)
// mmap the binder, providing a chunk of virtual address space
// to receive transactions.
//内存映射
mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ,
MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
if (mVMStart == MAP_FAILED) {
// *sigh*
ALOGE("Using /dev/binder failed: unable to
mmap transaction memory.\n");
close(mDriverFD);
mDriverFD = -1;
}
#else
mDriverFD = -1;
#endif
}
LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver
could not be opened. Terminating.");
}
open_driver的实现:
static int open_driver()
{
int fd = open("/dev/binder", O_RDWR); //打开binder设备
if (fd >= 0) {
fcntl(fd, F_SETFD, FD_CLOEXEC);
int vers;
//检查版本
status_t result = ioctl(fd, BINDER_VERSION, &vers);
if (result == -1) {
ALOGE("Binder ioctl to obtain version failed: %s",
strerror(errno));
close(fd);
fd = -1;
}
if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
ALOGE("Binder driver protocol does not match
user space protocol!");
close(fd);
fd = -1;
}
//默认设置支持的线程数是15
size_t maxThreads = 15;
result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
if (result == -1) {
ALOGE("Binder ioctl to set max threads failed: %s",
strerror(errno));
}
} else {
ALOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
}
return fd;
}
void ProcessState::startThreadPool()
{
AutoMutex _l(mLock);
if (!mThreadPoolStarted) {
mThreadPoolStarted = true;
spawnPooledThread(true);
}
}
void ProcessState::spawnPooledThread(bool isMain)
{
if (mThreadPoolStarted) {
int32_t s = android_atomic_add(1, &mThreadPoolSeq);
char buf[16];
snprintf(buf, sizeof(buf), "Binder_%X", s);
ALOGV("Spawning new pooled thread, name=%s\n", buf);
//PoolThread也在ProcessState里实现
sp t = new PoolThread(isMain);
//启动线程,buf是新线程的名字
t->run(buf);
}
}
PoolThread继承自Thread类,Thread类是框架层提供的一个类,和Java的Thread类相似,使用PoolThread类时需实现threadLoop函数(Java使用Thread类时需覆盖run方法),新线程执行threadLoop函数,启动新线程需调用PoolThread对象的run方法(Java中调用start方法)。
PoolThread类的源码如下所示:
class PoolThread : public Thread
{
public:
PoolThread(bool isMain)
: mIsMain(isMain)
{
}
protected:
virtual bool threadLoop()
{
//加入线程池
IPCThreadState::self()->joinThreadPool(mIsMain);
return false;
}
const bool mIsMain;
};
IPCThreadState负责直接和binder设备通信,从binder驱动读取数据,并向binder驱动写数据。
IPCThreadState也采用了单例模式。
IPCThreadState类图如下图所示:
我们通常在binder service的服务端象下面一样使用IPCThreadState:
IPCThreadState::self()->joinThreadPool();
IPCThreadState joinThreadPool的函数原型:
void joinThreadPool(bool isMain = true);
IPCThreadState的构造函数实现:
IPCThreadState::IPCThreadState()
: mProcess(ProcessState::self()),
mMyThreadId(androidGetTid()),
mStrictModePolicy(0),
mLastTransactionBinderFlags(0)
{
pthread_setspecific(gTLS, this);
clearCaller();
mIn.setDataCapacity(256);
mOut.setDataCapacity(256);
}
joinThreadPool的函数实现如下所示:
void IPCThreadState::joinThreadPool(bool isMain)
{
LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n",
(void*)pthread_self(), getpid());
mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
// This thread may have been spawned by a thread that was
// in the background scheduling group, so first we will
//make sure it is in the foreground
// one to avoid performing an initial transaction in the background.
set_sched_policy(mMyThreadId, SP_FOREGROUND);
status_t result;
do {
int32_t cmd;
// When we've cleared the incoming command queue,
//process any pending derefs
if (mIn.dataPosition() >= mIn.dataSize()) {
size_t numPending = mPendingWeakDerefs.size();
if (numPending > 0) {
for (size_t i = 0; i < numPending; i++) {
RefBase::weakref_type* refs = mPendingWeakDerefs[i];
refs->decWeak(mProcess.get());
}
mPendingWeakDerefs.clear();
}
numPending = mPendingStrongDerefs.size();
if (numPending > 0) {
for (size_t i = 0; i < numPending; i++) {
BBinder* obj = mPendingStrongDerefs[i];
obj->decStrong(mProcess.get());
}
mPendingStrongDerefs.clear();
}
}
// now get the next command to be processed, waiting if necessary
//跟驱动交互 获取数据 或者写入数据
result = talkWithDriver();
if (result >= NO_ERROR) {
size_t IN = mIn.dataAvail();
if (IN < sizeof(int32_t)) continue;
//获取命令
cmd = mIn.readInt32();
IF_LOG_COMMANDS() {
alog << "Processing top-level Command: "
<< getReturnString(cmd) << endl;
}
//执行命令
result = executeCommand(cmd);
}
// After executing the command, ensure that the thread is returned to the
// foreground cgroup before rejoining the pool. The driver takes care of
// restoring the priority, but doesn't do anything with cgroups so we
// need to take care of that here in userspace. Note that we do make
// sure to go in the foreground after executing a transaction, but
// there are other callbacks into user code that could have changed
// our group so we want to make absolutely sure it is put back.
set_sched_policy(mMyThreadId, SP_FOREGROUND);
// Let this thread exit the thread pool if it is no longer
// needed and it is not the main process thread.
if(result == TIMED_OUT && !isMain) {
break;
}
} while (result != -ECONNREFUSED && result != -EBADF);
LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL
err=%p\n",
(void*)pthread_self(), getpid(), (void*)result);
mOut.writeInt32(BC_EXIT_LOOPER);
talkWithDriver(false);
}
talkWithDriver的实现:
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
if (mProcess->mDriverFD <= 0) {
return -EBADF;
}
binder_write_read bwr; //和驱动交互时的数据结构
// Is the read buffer empty?
const bool needRead = mIn.dataPosition() >= mIn.dataSize();
// We don't want to write anything if we are still reading
// from data left in the input buffer and the caller
// has requested to read the next data.
const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
bwr.write_size = outAvail;
bwr.write_buffer = (long unsigned int)mOut.data();
// This is what we'll read.
if (doReceive && needRead) {
bwr.read_size = mIn.dataCapacity();
bwr.read_buffer = (long unsigned int)mIn.data();
} else {
bwr.read_size = 0;
bwr.read_buffer = 0;
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
if (outAvail != 0) {
alog << "Sending commands to driver: " << indent;
const void* cmds = (const void*)bwr.write_buffer;
const void* end = ((const uint8_t*)cmds)+bwr.write_size;
alog << HexDump(cmds, bwr.write_size) << endl;
while (cmds < end) cmds = printCommand(alog, cmds);
alog << dedent;
}
alog << "Size of receive buffer: " << bwr.read_size
<< ", needRead: " << needRead << ", doReceive: "
<< doReceive << endl;
}
// Return immediately if there is nothing to do.
if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
bwr.write_consumed = 0;
bwr.read_consumed = 0;
status_t err;
do {
IF_LOG_COMMANDS() {
alog << "About to read/write, write size = "
<< mOut.dataSize() << endl;
}
#if defined(HAVE_ANDROID_OS)
//使用ioctl与binder驱动交互,BINDER_WRITE_READ是最重要的命令字
if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
err = NO_ERROR;
else
err = -errno;
#else
err = INVALID_OPERATION;
#endif
if (mProcess->mDriverFD <= 0) {
err = -EBADF;
}
IF_LOG_COMMANDS() {
alog << "Finished read/write, write size = "
<< mOut.dataSize() << endl;
}
} while (err == -EINTR);
IF_LOG_COMMANDS() {
alog << "Our err: " << (void*)err << ", write consumed: "
<< bwr.write_consumed << " (of " << mOut.dataSize()
<< "), read consumed: "
<< bwr.read_consumed << endl;
}
if (err >= NO_ERROR) {
if (bwr.write_consumed > 0) {
if (bwr.write_consumed < (ssize_t)mOut.dataSize())
mOut.remove(0, bwr.write_consumed);
else
mOut.setDataSize(0);
}
if (bwr.read_consumed > 0) {
mIn.setDataSize(bwr.read_consumed);
mIn.setDataPosition(0);
}
IF_LOG_COMMANDS() {
TextOutput::Bundle _b(alog);
alog << "Remaining data size: " << mOut.dataSize() << endl;
alog << "Received commands from driver: " << indent;
const void* cmds = mIn.data();
const void* end = mIn.data() + mIn.dataSize();
alog << HexDump(cmds, mIn.dataSize()) << endl;
while (cmds < end) cmds = printReturnCommand(alog, cmds);
alog << dedent;
}
return NO_ERROR;
}
return err;
}
executeCommand的实现:
status_t IPCThreadState::executeCommand(int32_t cmd)
{
BBinder* obj;
RefBase::weakref_type* refs;
status_t result = NO_ERROR;
switch (cmd) {
case BR_ERROR:
result = mIn.readInt32();
break;
case BR_OK:
break;
case BR_ACQUIRE:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
ALOG_ASSERT(refs->refBase() == obj,
"BR_ACQUIRE: object %p does not match cookie %p
(expected %p)",
refs, obj, refs->refBase());
obj->incStrong(mProcess.get());
IF_LOG_REMOTEREFS() {
LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj);
obj->printRefs();
}
mOut.writeInt32(BC_ACQUIRE_DONE);
mOut.writeInt32((int32_t)refs);
mOut.writeInt32((int32_t)obj);
break;
case BR_RELEASE:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
ALOG_ASSERT(refs->refBase() == obj,
"BR_RELEASE: object %p does not match
cookie %p (expected %p)",
refs, obj, refs->refBase());
IF_LOG_REMOTEREFS() {
LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj);
obj->printRefs();
}
mPendingStrongDerefs.push(obj);
break;
case BR_INCREFS:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
refs->incWeak(mProcess.get());
mOut.writeInt32(BC_INCREFS_DONE);
mOut.writeInt32((int32_t)refs);
mOut.writeInt32((int32_t)obj);
break;
case BR_DECREFS:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
// NOTE: This assertion is not valid, because the object may no
// longer exist (thus the (BBinder*)cast
//above resulting in a different
// memory address).
//ALOG_ASSERT(refs->refBase() == obj,
// "BR_DECREFS: object %p does not match
//cookie %p (expected %p)",
// refs, obj, refs->refBase());
mPendingWeakDerefs.push(refs);
break;
case BR_ATTEMPT_ACQUIRE:
refs = (RefBase::weakref_type*)mIn.readInt32();
obj = (BBinder*)mIn.readInt32();
{
const bool success = refs->attemptIncStrong(mProcess.get());
ALOG_ASSERT(success && refs->refBase() == obj,
"BR_ATTEMPT_ACQUIRE: object %p does not
match cookie %p (expected %p)",
refs, obj, refs->refBase());
mOut.writeInt32(BC_ACQUIRE_RESULT);
mOut.writeInt32((int32_t)success);
}
break;
case BR_TRANSACTION: //最重要的分支
{
binder_transaction_data tr;
result = mIn.read(&tr, sizeof(tr));
ALOG_ASSERT(result == NO_ERROR,
"Not enough command data for brTRANSACTION");
if (result != NO_ERROR) break;
Parcel buffer;
buffer.ipcSetDataReference(
reinterpret_cast(tr.data.ptr.buffer),
tr.data_size,
reinterpret_cast(tr.data.ptr.offsets),
tr.offsets_size/sizeof(size_t), freeBuffer, this);
const pid_t origPid = mCallingPid;
const uid_t origUid = mCallingUid;
mCallingPid = tr.sender_pid;
mCallingUid = tr.sender_euid;
int curPrio = getpriority(PRIO_PROCESS, mMyThreadId);
if (gDisableBackgroundScheduling) {
if (curPrio > ANDROID_PRIORITY_NORMAL) {
// We have inherited a reduced priority from the caller, but do not
// want to run in that state in this process. The driver set our
// priority already (though not our scheduling class), so bounce
// it back to the default before invoking the transaction.
setpriority(PRIO_PROCESS, mMyThreadId,
ANDROID_PRIORITY_NORMAL);
}
} else {
if (curPrio >= ANDROID_PRIORITY_BACKGROUND) {
// We want to use the inherited priority from the caller.
// Ensure this thread is in the background scheduling class,
// since the driver won't modify scheduling classes for us.
// The scheduling group is reset to default by the caller
// once this method returns after the transaction is complete.
set_sched_policy(mMyThreadId, SP_BACKGROUND);
}
}
//ALOGI(">>>> TRANSACT from pid %d uid %d\n",
// mCallingPid, mCallingUid);
Parcel reply;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BR_TRANSACTION thr " << (void*)pthread_self()
<< " / obj " << tr.target.ptr << " / code "
<< TypeCode(tr.code) << ": " << indent << buffer
<< dedent << endl
<< "Data addr = "
<< reinterpret_cast(tr.data.ptr.buffer)
<< ", offsets addr="
<< reinterpret_cast(tr.data.ptr.offsets)
<< endl;
}
if (tr.target.ptr) {
sp b((BBinder*)tr.cookie);
//调用BBinder的transact方法 最终会调用服务类的onTransact方法
const status_t error = b->transact(tr.code, buffer,
&reply, tr.flags);
if (error < NO_ERROR) reply.setError(error);
} else {
const status_t error = the_context_object->transact(tr.code,
buffer, &reply, tr.flags);
if (error < NO_ERROR) reply.setError(error);
}
//ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
// mCallingPid, origPid, origUid);
if ((tr.flags & TF_ONE_WAY) == 0) {
LOG_ONEWAY("Sending reply to %d!", mCallingPid);
sendReply(reply, 0);
} else {
LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
}
mCallingPid = origPid;
mCallingUid = origUid;
IF_LOG_TRANSACTIONS() {
TextOutput::Bundle _b(alog);
alog << "BC_REPLY thr " << (void*)pthread_self()
<< " / obj "
<< tr.target.ptr << ": " << indent << reply
<< dedent << endl;
}
}
break;
case BR_DEAD_BINDER:
{
BpBinder *proxy = (BpBinder*)mIn.readInt32();
proxy->sendObituary();
mOut.writeInt32(BC_DEAD_BINDER_DONE);
mOut.writeInt32((int32_t)proxy);
} break;
case BR_CLEAR_DEATH_NOTIFICATION_DONE:
{
BpBinder *proxy = (BpBinder*)mIn.readInt32();
proxy->getWeakRefs()->decWeak(proxy);
} break;
case BR_FINISHED:
result = TIMED_OUT;
break;
case BR_NOOP:
break;
case BR_SPAWN_LOOPER:
mProcess->spawnPooledThread(false);
break;
default:
printf("*** BAD COMMAND %d received from Binder driver\n", cmd);
result = UNKNOWN_ERROR;
break;
}
if (result != NO_ERROR) {
mLastError = result;
}
return result;
}
Binder核心框架主要是IBinder及它的两个子类,即BBinder和BpBinder,分别代表了最基本的服务端及客户端。类图如下图所示:
IBinder有两个直接子类,代表服务端的BBinder和代表客户端的BpBinder。
重要方法说明(以下方法均是抽象方法):
queryLocalInterface 用于检查IBinder是否实现了descriptor指定的接口,若实现了则会返回它的指针
getInterfaceDescriptor 用于返回IBinder提供的接口名字
transact 客户端用该方法向服务端提交数据,服务端实现该方法以处理客户端请求。
BBinder代表binder service服务端,最终声明的binder 服务类将间接从该类继承,它实现了IBinder声明的transact方法,转调留给子类实现onTrasact的方法。
status_t BBinder::transact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
data.setDataPosition(0);
status_t err = NO_ERROR;
switch (code) {
case PING_TRANSACTION:
reply->writeInt32(pingBinder());
break;
default:
err = onTransact(code, data, reply, flags);
break;
}
if (reply != NULL) {
reply->setDataPosition(0);
}
return err;
}
客户端使用servicemananger查询服务时实际上是先得到一个句柄handle,然后ProcessState的getStrongProxyForHandle函数里利用句柄handle建立BpBinder对象,再转为IBinder指针,代理类便是通过该指针向服务端请求。