树
是一种经常用到的数据结构,用来模拟具有树状结构性质的数据集合。
树里的每一个节点有一个根植和一个包含所有子节点的列表。从图的观点来看,树也可视为一个拥有N 个节点
和N-1 条边
的一个有向无环图。
二叉树
是一种更为典型的树树状结构。如它名字所描述的那样,二叉树是每个节点最多有两个子树
的树结构,通常子树被称作“左子树”和“右子树”。
前序遍历首先访问根节点,然后遍历左子树,最后遍历右子树。
请看下面的例子:
中序遍历是先遍历左子树,然后访问根节点,然后遍历右子树。
后序遍历是先遍历左子树,然后遍历右子树,最后访问树的根节点。
值得注意的是,当你删除树中的节点时,删除过程将按照后序遍历的顺序进行。 也就是说,当你删除一个节点时,你将首先删除它的左节点和它的右边的节点,然后再删除节点本身。
如果你想对这棵树进行后序遍历,使用栈来处理表达式会变得更加容易。 每遇到一个操作符,就可以从栈中弹出栈顶的两个元素,计算并将结果返回到栈中。
层序遍历就是逐层遍历树结构。
广度优先搜索
是一种广泛运用在树或图这类数据结构中,遍历或搜索的算法。 该算法从一个根节点开始,首先访问节点本身。 然后遍历它的相邻节点,其次遍历它的二级邻节点、三级邻节点,以此类推。
当我们在树中进行广度优先搜索时,我们访问的节点的顺序是按照层序遍历顺序的。
递归是解决树的相关问题最有效和最常用的方法之一。
树可以以递归的方式定义为一个节点(根节点),它包括一个值和一个指向其他节点指针的列表。 递归是树的特性之一。 因此,许多树问题可以通过递归的方式来解决。 对于每个递归层级,我们只能关注单个节点内的问题,并通过递归调用函数来解决其子节点问题。
通常,我们可以通过 “自顶向下” 或 “自底向上” 的递归来解决树问题。
“自顶向下” 意味着在每个递归层级,我们将首先访问节点来计算一些值,并在递归调用函数时将这些值传递到子节点。 所以 “自顶向下” 的解决方案可以被认为是一种前序遍历。 具体来说,递归函数 top_down(root, params)
的原理是这样的:
1. return specific value for null node
2. update the answer if needed // anwer <-- params
3. left_ans = top_down(root.left, left_params) // left_params <-- root.val, params
4. right_ans = top_down(root.right, right_params) // right_params <-- root.val, params
5. return the answer if needed // answer <-- left_ans, right_ans
例如,思考这样一个问题:给定一个二叉树,请寻找它的最大深度。
我们知道根节点的深度是1
。 对于每个节点,如果我们知道某节点的深度,那我们将知道它子节点的深度。 因此,在调用递归函数的时候,将节点的深度传递为一个参数,那么所有的节点都知道它们自身的深度。 而对于叶节点,我们可以通过更新深度从而获取最终答案。 这里是递归函数 maximum_depth(root, depth)
的伪代码:
1. return if root is null
2. if root is a leaf node:
3. answer = max(answer, depth) // update the answer if needed
4. maximum_depth(root.left, depth + 1) // call the function recursively for left child
5. maximum_depth(root.right, depth + 1) // call the function recursively for right child
以下的例子可以帮助你理解它是如何工作的:
int answer; // don't forget to initialize answer before call maximum_depth
void maximum_depth(TreeNode* root, int depth) {
if (!root) {
return;
}
if (!root->left && !root->right) {
answer = max(answer, depth);
}
maximum_depth(root->left, depth + 1);
maximum_depth(root->right, depth + 1);
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-idIouR7Y-1589513500589)(C:\Users\SHERRY~1\AppData\Local\Temp\1589338059349.png)]
“自底向上” 是另一种递归方法。 在每个递归层次上,我们首先对所有子节点递归地调用函数,然后根据返回值和根节点本身的值得到答案。 这个过程可以看作是后序遍历的一种。 通常, “自底向上” 的递归函数 bottom_up(root)
为如下所示:
1. return specific value for null node
2. left_ans = bottom_up(root.left) // call function recursively for left child
3. right_ans = bottom_up(root.right) // call function recursively for right child
4. return answers // answer <-- left_ans, right_ans, root.val
让我们继续讨论前面关于树的最大深度的问题,但是使用不同的思维方式:对于树的单个节点,以节点自身为根的子树的最大深度x
是多少?
如果我们知道一个根节点,以其左子节点为根的最大深度为l
和以其右子节点为根的最大深度为r
,我们是否可以回答前面的问题? 当然可以,我们可以选择它们之间的最大值,再加上1来获得根节点所在的子树的最大深度。 那就是 x = max(l,r)+ 1
。
这意味着对于每一个节点来说,我们都可以在解决它子节点的问题之后得到答案。 因此,我们可以使用“自底向上“的方法。下面是递归函数 maximum_depth(root)
的伪代码:
1. return 0 if root is null // return 0 for null node
2. left_depth = maximum_depth(root.left)
3. right_depth = maximum_depth(root.right)
4. return max(left_depth, right_depth) + 1 // return depth of the subtree rooted at root
以下的例子可以帮助你理解它是如何工作的:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q0lLSyrc-1589513500589)(C:\Users\SHERRY~1\AppData\Local\Temp\1589513301516.png)]
int maximum_depth(TreeNode* root) {
if (!root) {
return 0; // return 0 for null node
}
int left_depth = maximum_depth(root->left);
int right_depth = maximum_depth(root->right);
return max(left_depth, right_depth) + 1; // return depth of the subtree rooted at root
}
了解递归并利用递归解决问题并不容易。
当遇到树问题时,请先思考一下两个问题:
如果答案都是肯定的,那么请尝试使用 “自顶向下
” 的递归来解决此问题。
并利用递归解决问题并不容易。
当遇到树问题时,请先思考一下两个问题:
如果答案都是肯定的,那么请尝试使用 “自顶向下
” 的递归来解决此问题。
或者你可以这样思考:对于树中的任意一个节点,如果你知道它子节点的答案,你能计算出该节点的答案吗? 如果答案是肯定的,那么 “自底向上
” 的递归可能是一个不错的解决方法。