(noip 模拟 flower 种花)

Problem

有n个带权点围成一圈,取出m个,使取出点的权值和最大,且任意两个相邻点不会都被取到


Solution

如果选第i个点,ans+=val[i]
如果选第i个点左右两个点,ans+=val[l](前驱)+val[r](后继)
但是这两种方案哪个更优是无法确定的
把某个点的权值取出后,将它的权值赋为val[l]+val[r]-val[i]
这样以后如果在选这个点,+val-val相互抵消,实际上ans+=val[l]+val[r],相当于选第i个点的前驱和后继
这里的前驱后继并不是i-1和i+1,因为从队列里取出i后,就会让i出的权值改为val[l]+val[r]-val[i],之后必须把val[l]和val[r]都赋为0,才不会重复
因此需要改前驱和后继,具体看代码


Code

// by spli
#include
#include
#include
#include
#include
using namespace std;

const int N=3010;
int n,m;
int a[N];
int L[N],R[N];
bool vis[N];
struct node{
    int k;
};
priority_queue q;
int ans=0;

bool operator <(const node &x,const node &y){
    return a[x.k]int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i) scanf("%d",&a[i]);
    for(int i=1;i<=n;++i) q.push((node){i});
    L[1]=n;R[1]=2;
    L[n]=n-1;R[n]=1;
    for(int i=2;i<=n-1;++i)
        L[i]=i-1,R[i]=i+1;
    while(m--){
        node f=q.top();
        q.pop();
        while(vis[f.k]){
            f=q.top();
            q.pop();
        }
        ans+=a[f.k];
        a[f.k]=a[L[f.k]]+a[R[f.k]]-a[f.k];
        vis[L[f.k]]=1;
        vis[R[f.k]]=1;
        L[f.k]=L[L[f.k]];
        R[f.k]=R[R[f.k]];
        R[L[f.k]]=f.k;
        L[R[f.k]]=f.k;
        q.push((node){f.k});
    }
    cout<return 0;
}

你可能感兴趣的:(结论思路打死题,技巧,noip模拟,贪心)