ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测(包括特征工程和单参数调参)

 

 

 

 

目录

利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测(包括特征工程)

1、LassoR

2、KernelRidgeR

3、ElasticNetR

4、GBR

5、LGBMR

6、XGBR


 

 

相关文章
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理实现
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)——附录
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理实现
ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测
ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测实现

利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测(包括特征工程)

1、LassoR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第1张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第2张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第3张图片

LassoR-0.5 Score value: -0.0005055552395767382
LassoR-0.5 R2    value: -0.0005055552395767382
LassoR-0.5 MAE   value: 0.09939996261234317
LassoR-0.5 MSE   value: 0.015779522350425033

LassoR-0.05 Score value: 0.5022404879755265
LassoR-0.05 R2    value: 0.5022404879755265
LassoR-0.05 MAE   value: 0.07037495216160995
LassoR-0.05 MSE   value: 0.007850438514802703

LassoR-0.01 Score value: 0.9688284646643495
LassoR-0.01 R2    value: 0.9688284646643495
LassoR-0.01 MAE   value: 0.017225365757314693
LassoR-0.01 MSE   value: 0.0004916233957423449

LassoR-0.005 Score value: 0.9837696043172183
LassoR-0.005 R2    value: 0.9837696043172183
LassoR-0.005 MAE   value: 0.012281723604764734
LassoR-0.005 MSE   value: 0.0002559784801708263

LassoR-0.001 Score value: 0.9898771362261237
LassoR-0.001 R2    value: 0.9898771362261237
LassoR-0.001 MAE   value: 0.009067394814047579
LassoR-0.001 MSE   value: 0.00015965324163736406

LassoR-0.0001 Score value: 0.9942215817581104
LassoR-0.0001 R2    value: 0.9942215817581104
LassoR-0.0001 MAE   value: 0.0067102545940495514
LassoR-0.0001 MSE   value: 9.113460622032017e-05




[-0.0005055552395767382, 0.5022404879755265, 0.9688284646643495, 0.9837696043172183, 0.9898771362261237, 0.9942215817581104]

 

 

2、KernelRidgeR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第4张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第5张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第6张图片

KernelRidgeR-0.5 Score value: 0.9544414613254653
KernelRidgeR-0.5 R2    value: 0.9544414613254653
KernelRidgeR-0.5 MAE   value: 0.020348726878028075
KernelRidgeR-0.5 MSE   value: 0.0007185287233066692

KernelRidgeR-0.05 Score value: 0.992221974943464
KernelRidgeR-0.05 R2    value: 0.992221974943464
KernelRidgeR-0.05 MAE   value: 0.008029713794101924
KernelRidgeR-0.05 MSE   value: 0.00012267150300068682

KernelRidgeR-0.01 Score value: 0.9953080928564902
KernelRidgeR-0.01 R2    value: 0.9953080928564902
KernelRidgeR-0.01 MAE   value: 0.006042556218634196
KernelRidgeR-0.01 MSE   value: 7.3998643235321e-05

KernelRidgeR-0.005 Score value: 0.9961880311177832
KernelRidgeR-0.005 R2    value: 0.9961880311177832
KernelRidgeR-0.005 MAE   value: 0.005338518159253265
KernelRidgeR-0.005 MSE   value: 6.012065386449663e-05

KernelRidgeR-0.001 Score value: 0.9973841188580002
KernelRidgeR-0.001 R2    value: 0.9973841188580002
KernelRidgeR-0.001 MAE   value: 0.004183983328177061
KernelRidgeR-0.001 MSE   value: 4.125649750775996e-05

KernelRidgeR-0.0001 Score value: 0.9977701958859504
KernelRidgeR-0.0001 R2    value: 0.9977701958859504
KernelRidgeR-0.0001 MAE   value: 0.0036901575950436236
KernelRidgeR-0.0001 MSE   value: 3.516746475864464e-05




[0.9544414613254653, 0.992221974943464, 0.9953080928564902, 0.9961880311177832, 0.9973841188580002, 0.9977701958859504]

 

 

3、ElasticNetR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第7张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第8张图片

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第9张图片

ElasticNetR-0.5 Score value: -0.0005308426992141069
ElasticNetR-0.5 R2    value: -0.0005308426992141069
ElasticNetR-0.5 MAE   value: 0.09940889668350568
ElasticNetR-0.5 MSE   value: 0.015779921172832806

ElasticNetR-0.05 Score value: 0.5909997356551588
ElasticNetR-0.05 R2    value: 0.5909997356551588
ElasticNetR-0.05 MAE   value: 0.06384977771594441
ElasticNetR-0.05 MSE   value: 0.006450567694263088

ElasticNetR-0.01 Score value: 0.9722470175744828
ElasticNetR-0.01 R2    value: 0.9722470175744828
ElasticNetR-0.01 MAE   value: 0.01621461543934733
ElasticNetR-0.01 MSE   value: 0.00043770752114368465

ElasticNetR-0.005 Score value: 0.9846441765684218
ElasticNetR-0.005 R2    value: 0.9846441765684218
ElasticNetR-0.005 MAE   value: 0.01189698639426006
ElasticNetR-0.005 MSE   value: 0.00024218512109085247

ElasticNetR-0.001 Score value: 0.9902182047362088
ElasticNetR-0.001 R2    value: 0.9902182047362088
ElasticNetR-0.001 MAE   value: 0.00886838381299399
ElasticNetR-0.001 MSE   value: 0.00015427406293142925

ElasticNetR-0.0001 Score value: 0.9942704213728978
ElasticNetR-0.0001 R2    value: 0.9942704213728978
ElasticNetR-0.0001 MAE   value: 0.006695706278914398
ElasticNetR-0.0001 MSE   value: 9.036432984445262e-05




[-0.0005308426992141069, 0.5909997356551588, 0.9722470175744828, 0.9846441765684218, 0.9902182047362088, 0.9942704213728978]

 

4、GBR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第10张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第11张图片

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第12张图片

GBR-1
GBR-1 Score value: 0.9763666115566574
GBR-1 R2    value: 0.9763666115566574
GBR-1 MAE   value: 0.012052516368497329
GBR-1 MSE   value: 0.00037273514295350755

GBR-2
GBR-2 Score value: 0.9926847727617255
GBR-2 R2    value: 0.9926847727617255
GBR-2 MAE   value: 0.008012779193494083
GBR-2 MSE   value: 0.0001153724645508341

GBR-3
GBR-3 Score value: 0.9958318342325574
GBR-3 R2    value: 0.9958318342325574
GBR-3 MAE   value: 0.005714597302721484
GBR-3 MSE   value: 6.573843047966691e-05

GBR-4
GBR-4 Score value: 0.9958185134836749
GBR-4 R2    value: 0.9958185134836749
GBR-4 MAE   value: 0.004795477929089135
GBR-4 MSE   value: 6.594851932286696e-05

GBR-5
GBR-5 Score value: 0.9936308502387022
GBR-5 R2    value: 0.9936308502387022
GBR-5 MAE   value: 0.004648655284013917
GBR-5 MSE   value: 0.00010045135730159553

GBR-6
GBR-6 Score value: 0.9928564661943613
GBR-6 R2    value: 0.9928564661943613
GBR-6 MAE   value: 0.004401292926689321
GBR-6 MSE   value: 0.00011266459317169972

GBR-7
GBR-7 Score value: 0.9902977868325656
GBR-7 R2    value: 0.9902977868325656
GBR-7 MAE   value: 0.004428399093689221
GBR-7 MSE   value: 0.0001530189300023011

GBR-8
GBR-8 Score value: 0.9869749160018195
GBR-8 R2    value: 0.9869749160018195
GBR-8 MAE   value: 0.004718971897735163
GBR-8 MSE   value: 0.00020542575000119555

GBR-9
GBR-9 Score value: 0.9853247317034755
GBR-9 R2    value: 0.9853247317034755
GBR-9 MAE   value: 0.0050509572638206945
GBR-9 MSE   value: 0.00023145171245755048

GBR-10
GBR-10 Score value: 0.9838819868698998
GBR-10 R2    value: 0.9838819868698998
GBR-10 MAE   value: 0.005661280988227483
GBR-10 MSE   value: 0.000254206033238824

GBR-11
GBR-11 Score value: 0.9830335256911121
GBR-11 R2    value: 0.9830335256911121
GBR-11 MAE   value: 0.006145980498176065
GBR-11 MSE   value: 0.0002675875802617618




[0.9763666115566574, 0.9926847727617255, 0.9958318342325574, 0.9958185134836749, 0.9936308502387022, 0.9928564661943613, 0.9902977868325656, 0.9869749160018195, 0.9853247317034755, 0.9838819868698998, 0.9830335256911121]

 

5、LGBMR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第13张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第14张图片

 

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第15张图片

LGBMR-0.001
LGBMR-0.001 Score value: 0.16876197122096692
LGBMR-0.001 R2    value: 0.16876197122096692
LGBMR-0.001 MAE   value: 0.09046580583395379
LGBMR-0.001 MSE   value: 0.013109911269309412

LGBMR-0.005
LGBMR-0.005 Score value: 0.600585544258686
LGBMR-0.005 R2    value: 0.600585544258686
LGBMR-0.005 MAE   value: 0.062265161731615705
LGBMR-0.005 MSE   value: 0.006299384644539756

LGBMR-0.01
LGBMR-0.01 Score value: 0.8337825446742081
LGBMR-0.01 R2    value: 0.8337825446742081
LGBMR-0.01 MAE   value: 0.0391266729122725
LGBMR-0.01 MSE   value: 0.0026215067348787035

LGBMR-0.05
LGBMR-0.05 Score value: 0.9913041321780923
LGBMR-0.05 R2    value: 0.9913041321780923
LGBMR-0.05 MAE   value: 0.005162800605481635
LGBMR-0.05 MSE   value: 0.0001371473051134398

LGBMR-0.1
LGBMR-0.1 Score value: 0.9930306170725406
LGBMR-0.1 R2    value: 0.9930306170725406
LGBMR-0.1 MAE   value: 0.004702627111296393
LGBMR-0.1 MSE   value: 0.00010991796406985765

LGBMR-0.3
LGBMR-0.3 Score value: 0.9943329790691453
LGBMR-0.3 R2    value: 0.9943329790691453
LGBMR-0.3 MAE   value: 0.004947701938557634
LGBMR-0.3 MSE   value: 8.937769807518515e-05

LGBMR-0.5
LGBMR-0.5 Score value: 0.9923225863703856
LGBMR-0.5 R2    value: 0.9923225863703856
LGBMR-0.5 MAE   value: 0.006078772753272445
LGBMR-0.5 MSE   value: 0.00012108470495493492

LGBMR-0.8
LGBMR-0.8 Score value: 0.9850122706624084
LGBMR-0.8 R2    value: 0.9850122706624084
LGBMR-0.8 MAE   value: 0.008351662282985653
LGBMR-0.8 MSE   value: 0.00023637970706521245




[0.16876197122096692, 0.600585544258686, 0.8337825446742081, 0.9913041321780923, 0.9930306170725406, 0.9943329790691453, 0.9923225863703856, 0.9850122706624084]

 

6、XGBR

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第16张图片ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第17张图片

ML之回归预测:利用多个算法模型(LassoR、KernelRidgeR、ElasticNetR、GBR、LGBMR、XGBR)对国内某平台上海2020年6月份房价数据集【12+1】进行回归预测_第18张图片

XGBR-0.001
XGBR-0.001 Score value: -166.74203034694682
XGBR-0.001 R2    value: -166.74203034694682
XGBR-0.001 MAE   value: 1.6222131885073523
XGBR-0.001 MSE   value: 2.6455516444698888

XGBR-0.005
XGBR-0.005 Score value: -74.51589484580421
XGBR-0.005 R2    value: -74.51589484580421
XGBR-0.005 MAE   value: 1.0873952054959475
XGBR-0.005 MSE   value: 1.1910026329102963

XGBR-0.01
XGBR-0.01 Score value: -26.747645189967315
XGBR-0.01 R2    value: -26.747645189967315
XGBR-0.01 MAE   value: 0.6580440584800581
XGBR-0.01 MSE   value: 0.43762334467189284

XGBR-0.05
XGBR-0.05 Score value: 0.9828950831664092
XGBR-0.05 R2    value: 0.9828950831664092
XGBR-0.05 MAE   value: 0.013051145715410249
XGBR-0.05 MSE   value: 0.0002697710333184286

XGBR-0.1
XGBR-0.1 Score value: 0.9957552489177933
XGBR-0.1 R2    value: 0.9957552489177933
XGBR-0.1 MAE   value: 0.006227088292841316
XGBR-0.1 MSE   value: 6.694629952117871e-05

XGBR-0.3
XGBR-0.3 Score value: 0.9921237303622439
XGBR-0.3 R2    value: 0.9921237303622439
XGBR-0.3 MAE   value: 0.008735198405534918
XGBR-0.3 MSE   value: 0.00012422097222357384




[-166.74203034694682, -74.51589484580421, -26.747645189967315, 0.9828950831664092, 0.9957552489177933, 0.9921237303622439]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(ML)