- 基于人工智能的扫阅卷和数据分析服务需求文档
YiWait
人工智能人工智能数据分析数据挖掘
基于人工智能的扫阅卷和数据分析服务需求文档一、项目背景在教育领域,传统的人工阅卷方式效率低下、主观性强且易出错,难以满足大规模考试及频繁测评的需求。随着人工智能技术的飞速发展,基于人工智能的扫阅卷和数据分析服务应运而生。该服务利用先进的图像识别、自然语言处理等技术,实现试卷扫描、自动阅卷、成绩统计以及深度数据分析,为教育机构、学校提供高效、准确、全面的测评解决方案,助力教学质量提升和教育决策优化。
- 第十三届蓝桥杯大赛软件赛省赛 C/C++ 大学 B 组C题 刷题统计
我是小趴菜一枚
算法蓝桥杯c++c语言
问题描述小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做aa道题目,周六和周日每天做bb道题目。请你帮小明计算,按照计划他将在第几天实现做题数大于等于nn题?输入格式输入一行包含三个整数a,ba,b和nn.输出格式输出一个整数代表天数。样例输入102099样例输出8评测用例规模与约定对于50%50%的评测用例,1≤a,b,n≤1061≤a,b,n≤106.对于100%100%的评
- 揭秘:矩阵短视频源码系统功能设计!!!
程序员~17734800326
短视频矩阵矩阵矩阵源码java前端数据库python算法
矩阵短视频系统源码功能设计一、原始功能设计概述矩阵系统源码系统旨在为企业提供一套全面的短视频管理解决方案,涵盖从内容创作到发布的全流程。通过集成多种先进技术和工具,支持多平台账号统一管理、高效内容剪辑与批量生成、多样化的发布方式以及详尽的数据统计分析,助力企业在短视频领域实现规模化运营。二、核心功能模块跨平台账号整合:该模块允许企业对其在抖音、快手、B站等多个主流短视频平台上的多个账户进行集中授权
- OpenRAND可重复的随机数生成库
novanova2009
elasticsearch大数据搜索引擎
OpenRAND是一个C++库,旨在通过提供强大且可复制的随机数生成解决方案来促进可重复的科学研究。它是一个简单的仅头文件库,性能可移植,统计稳健,并且易于集成到任何HPC计算项目中。特征跨平台支持:OpenRAND旨在跨各种平台无缝工作,包括CPU和GPU。其仅标题库设计使其能够轻松集成到您的项目中。用户友好的API:OpenRAND提供了一个用户友好的API,可以直接在您的应用程序中生成随机数
- Operating System Concepts读书笔记——操作系统本质、类型与发展【1】
墨汁儿
操作系统
文章目录一、操作系统基础概念1.操作系统功能2.计算机系统组成部分3.用户角度对操作系统的需求4.系统角度二、各类型操作系统1.大型机系统1.1批处理系统1.2多道程序系统1.3分时系统2.桌面系统3.多处理器系统4.分布式系统4.1客户机-服务器系统4.2对等系统5.集群系统6.实时系统7.手持系统三、其它1.功能迁移2.计算环境2.1传统计算2.2基于Web的计算2.3嵌入式计算一、操作系统基
- 业务7——数据埋点
嚯嚯嚯嚯什么都不会
业务数据分析
文章目录一、数据生命周期:二、埋点是什么?1、含义2、方式三、埋点流程1、埋点生命周期2、业务需求分析3、埋点文档设计一、数据生命周期:还能从数据角度来看,数据在工作中的参与环节,帮助理清数据分析流程和思路。二、埋点是什么?1、含义数据埋点是数据采集的一种重要方式,是在有需要的位置采集相应的信息,主要是终端用户的操作行为,后续用于解决业务方提出的业务需求。2、方式全埋点代码埋点(百度统计、友盟、T
- 数据库数值函数详解
web安全工具库
数据库oraclejvm
各类资料学习下载合集https://pan.quark.cn/s/8c91ccb5a474数值函数是数据库中用于处理数值数据的函数,可以用于执行各种数学运算、统计计算等。数值函数在数据分析及处理时非常重要,能够帮助我们进行数据的聚合、计算和转换。在本篇博客中,我们将详细介绍常用的数据库数值函数,并通过Python和SQLite进行示例,帮助您理解和应用这些函数。1.数值函数的基本概念数值函数是用于
- 算法笔记——前缀树、贪心算法(更新ing.......
不吃香菜的码农
左神算法笔记算法数据结构贪心算法leetcode堆栈
前缀树、贪心算法一、前缀树1.什么是前缀树2.如何生成前缀树二、贪心算法1.拼接字符串2.金条问题3.项目会议时间问题4.项目收益最大化4.随时获得数据流的中位数一、前缀树1.什么是前缀树前缀树一般指字典树这是指一种结构而不是一类题(注意信息是在树的路上)典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查
- “统计视角看世界”专栏阅读引导
赛卡
统计视角看世界信息可视化数据分析
根据文章主题和逻辑关系,我为您设计以下阅读引导方案:1.六西格玛基础2.帕累托图3.直方图4.散点图基础5.散点图高阶6.多变量可视化7.密度图进阶8.回归分析配套文字说明:入门基石(必读)《1.六西格玛遇上Python》→方法论总纲,建议优先精读基础三剑客(可并行)├─《2.帕累托图》→重点数据排序与决策├─《3.直方图》→数据分布核心工具└─《4.散点图》→数据探索第一视角高阶应用链(递进学习
- SpringbootActuator未授权访问漏洞
web_15534274656
面试学习路线阿里巴巴java
漏洞介绍Actuator是SpringBoot提供的用来对应用系统进行自省和监控的功能模块,借助于Actuator开发者可以很方便地对应用系统某些监控指标进行查看、统计等。然而,其默认配置会出现接口未授权访问,导致部分接口会泄露网站数据库连接信息等配置信息,使用Jolokia库特性甚至可以远程执行任意代码,获取服务器权限。1、漏洞危害1、信息泄露:未授权的访问者可以通过Actuator端点获取敏感
- R语言入门课| 02 R及Rstudio的下载与安装
Biomamba生信基地
r语言开发语言生信
视频教程先上教程视频,B站同步播出:https://www.bilibili.com/video/BV1miNVeWEkw完整视频回放可见:R语言入门课回放来啦"R语言入门课"是我们认为生信小白入门不得不听的一个课程,我们也为这个课程准备了许多干货。在第二节课中,我们给大家详细的介绍了R及Rstudio的安装过程,大家赶紧装起图文内容1、R语言安装R是用于统计分析、绘图的语言和操作环境。R是一款属
- 代码训练day7哈希表2
徵686
散列表数据结构
1.四数相加IIleetcode454哈希表判断是否存在classSolution{//四数相加ii统计个数publicintfourSumCount(int[]nums1,int[]nums2,int[]nums3,int[]nums4){HashMapmap=newHashMapmagazine.length())returnfalse;//java字符串长度s.length()for(cha
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- matlab近似计算联合密度分布
小蜗笔记
matlab学习笔记学习收藏matlab开发语言
在Matlab中,当A和B是两个序列数据时,可以通过以下步骤来近似求出A大于B的概率分布:数据准备:确保序列A和B具有相同的长度。如果长度不同,需要进行相应的处理(例如截取或插值)。计算A大于B的逻辑数组:使用关系运算符>来创建一个逻辑数组,其中每个元素表示A中对应位置的元素是否大于B中对应位置的元素。统计不同情况下的概率:可以将数据划分成若干个区间(例如使用histcounts函数),然后计算每
- 员工管理(3)-删除员工-修改员工-全局异常处理器-员工信息统计
汐栊
java数据库开发语言
目录员工管理:删除员工:Controller层:Service层:Mapper接口:接受参数的两种方式:修改员工:查询回显:Controller层:Service层:Mapper接口:修改数据:Controller层:Service层:Mapper接口:程序优化:员工信息统计:职位统计开发Controller层:Service层:Mapper接口:性别统计:员工管理:删除员工:明确三层架构职责:C
- OpenStack阶梯计价实战:Hashmap模块从入门到精准计费
冯·诺依曼的
openstack云计算linux
目录Hashmap模块概述核心概念解析配置步骤详解应用场景分析注意事项与扩展1.Hashmap模块概述OpenStack的Rating模块负责资源使用量的计费统计,而Hashmap是其核心组件,用于定义灵活的计价规则。通过Hashmap,管理员可以:根据资源类型(如CPU、存储、网络)设置差异化单价实现阶梯计价(如使用量超过阈值后单价打折)将资源与服务、服务组绑定,支持复杂计费策略2.核心概念解析
- 机器学习实战 第一章 机器学习基础
LuoY、
MachineLearning机器学习算法人工智能
第一章机器学习1.1何谓机器学习1.2关键术语1.3机器学习的主要任务1.4如何选择合适的算法1.5开发机器学习应用程序的步骤1.6Python语言的优势1.1何谓机器学习 1、简单地说,机器学习就是把无序的数据转换成有用的信息; 2、机器学习能让我们自数据集中受启发,我们会利用计算机来彰显数据背后的真实含义; 3、机器学习横跨计算机科学、工程技术和统计学等多个学科,需要多学科的
- 重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵概率论线性代数windows微信机器学习
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、机器学习和优化中具有重要作用。以下是其计算和更新的关键步骤:一、Fisher矩阵的计算定义Fisher矩阵的元素表示对数似然函数关于参数的二阶导数的期望值的负数,即:Fi,j=−
- 2953. 统计完全子字符串(将题目中给的信息进行分组循环)
娇娇yyyyyy
每日一题算法
思路:根据题目中所给的第二个信息我们可以提取到至多相差2,说明相邻字母相减的绝对值小于等于2,一共有26个字母,因此我们可以枚举有多种不同的字母,因此每个窗口的大小为m*k,即在该窗口内有m个不同的字母,每一个均出现k次,暴力滑动窗口即可(tips:最后几个点实在过不去,可能是我用multiset的原因)classSolution{public:intcountCompleteSubstrings
- 深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
Ronin-Lotus
程序代码篇深度学习篇深度学习矩阵人工智能线性代数
文章目录前言一、对角矩阵(DiagonalMatrix)1.1定义1.2特性行列式运算简化1.3应用领域深度学习信号处理量子力学经济学二、矩阵的秩(RankofaMatrix)2.1定义2.2特性满秩降秩影响2.3应用领域深度学习图像压缩推荐系统控制理论三、奇异矩阵(SingularMatrix)3.1定义3.2特性秩不足行列式为零3.3应用领域深度学习正则化损失函数结构工程统计学数值计算四、跨领
- Activity渲染完成第一帧时机
brycegao321
Android渲染完成第一帧
Activity第一帧渲染涉及知识点setContentView流程、帧绘制流程、SurfaceFlinger等。统计开始时间:hookActivityThread的Instrumentation,得到Activity各个生命周期的开始、结束时间;参考:Activity的生命周期是谁调用的?注意:ActivityLifecycleCallbacks的回调函数是执行结束后触发的,无法得到开始执行时间
- 位图思想详解:用一个小小的比特征服整个世界
Joseit
优选算法java算法
位图思想详解:用一个小小的比特征服整个世界一、什么是位图?二、位图的形象理解三、位图的Java实现四、位图的算法原理剖析五、实际应用案例:网站用户活跃度统计五、真实的应用场景:布隆过滤器的基础六、算法题:判断字符是否唯一(easy)一、什么是位图?位图是一种超级节省空间的数据结构,他利用二进制位(0/1)来表示某个元素是否存在或某种状态是否为真。想象一下,用一个小小的比特位就能记录一个信息,这简直
- 开源瑰宝:全方位深度揭秘“随机数据生成器”
虞亚竹Luna
开源瑰宝:全方位深度揭秘“随机数据生成器”common-random简单易用的随机数据生成器。生成各种比较真实的假数据。一般用于开发和测试阶段的数据填充模拟。支持各类中国特色本地化的数据格式。Aneasy-touserandomdatagenerator.Generallyusedfordatafilling,simulation,demonstrationandotherscenariosint
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 【免费】2000-2019年各省地方财政企业所得税数据
2501_90487648
数据#省份省地方财政企业所得税
2000-2019年各省地方财政企业所得税数据1、时间:2000-2019年2、来源:国家统计局、统计年鉴3、指标:行政区划代码、地区、年份、地方财政企业所得税4、范围:31省5、指标说明:企业所得税是对企业的利润征收的一种税种,是地方财政收入的重要组成部分之一。企业所得税在地方财政中占有重要位置,通过合理的税收政策和管理,能够有效促进地方经济的健康发展与财政收入的增加。5、下载链接:2000-2
- 使用Seaborn绘制小提琴图
CodeWG
python开发语言
使用Seaborn绘制小提琴图在数据分析与可视化中,小提琴图是一种常用的图表类型。它能够展示数据的分布情况,同时还能显示中位数、四分位数和异常值等统计指标。在Python中,我们可以使用Seaborn库来轻松地绘制小提琴图。下面就来详细介绍一下如何使用Seaborn来创建小提琴图。首先,我们需要导入必要的库和数据集。这里我们使用Seaborn自带的数据集tips作为例子。importseaborn
- SSM卫生人员评审专家申报系统
浅浅学姐
课程设计毕业设计服务器运维java开发语言数据库后端
点赞+收藏+关注→添加文档最下方联系方式咨询本源代码、数据库本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。关注我不迷路项目视频SSM347的卫生人员项目申报评审管理系统资料介绍一、设计说明1.1研究背景面对大量的信息,传统的管理系统,都是通过笔记的方式进行详细信息的统计,后来出现电脑,通过电脑输入软件将纸质的信息统计到电脑上,这种方式比
- SSM卫生人员评审专家申报系统
Plume98
课程设计毕业设计服务器运维java开发语言数据库后端
点赞+收藏+关注→添加文档最下方联系方式咨询本源代码、数据库本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。关注我不迷路项目视频SSM347的卫生人员项目申报评审管理系统资料介绍一、设计说明1.1研究背景面对大量的信息,传统的管理系统,都是通过笔记的方式进行详细信息的统计,后来出现电脑,通过电脑输入软件将纸质的信息统计到电脑上,这种方式比
- 基于LangChain-Chatchat实现智能问答系统
2301_79125431
java
题解|#统计输入正数个数#5.6importjava.util.*;publicclassMain{publics广汽丰田发动机薪酬福利待遇1、工作时间:基本上为5天8小时工作制;2、薪资结构:基本工资+加班工资+各类补贴津贴+各类慰问金+小红书24届春招和25届实习,内部推荐小红书24届春招和25届实习,推荐码为:0T019BWYNARK,内推码仅适用于校招内推及微信小程序题解|#试卷发布当天作
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep