分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域
PIL 2009年之后就没有更新了,也不支持 Python3 ,于是有了 Alex Clark 领导的公益项目 Pillow,Pillow 是一个对 PIL 友好的分支,支持 Python3,所以我们这里安装的是 Pillow,其官方文档
安装前更新源
$ sudo apt-get update
首先我们需要处理一个问题:当前实验楼的环境中 python3 命令使用的 python 版本为 3.5,但源中却没有 python3.5-dev,这会导致安装 Pillow 出错。所以我们必须将 python3 命令使用的 python 版本切换为 3.4,然后再安装 python3-dev 和 python3-setuptools。
$ sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.4 70 --slave /usr/bin/python3m python3m /usr/bin/python3.4m$ sudo apt-get install python3-dev python3-setuptools
然后安装 Pillow 依赖包
$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev \ libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk
安装 pip3
,pip
是 Python2 的软件包管理系统,使用它来安装 Python2 的模块非常简便,而 pip3
则是对应于 Python3 的版本
$ sudo apt-get install python3-pip
最后安装 Pillow:
$ sudo pip3 install Pillow
本程序根据颜色(肤色)找出图片中皮肤的区域,然后通过一些条件判断是否为色情图片
程序的关键步骤如下
我们定义非色情图片的判定规则如下(满足任意一个判定为真):
这些规则你可以尝试更改,直到程序效果让你满意为止
关于像素肤色判定这方面,公式可以在网上找到很多,但世界上不可能有正确率 100% 的公式
你可以用自己找到的公式,在程序完成后慢慢调试
RGB 颜色模式
第一种:r > 95 and g > 40 and g < 100 and b > 20 and max([r, g, b]) - min([r, g, b]) > 15 and abs(r - g) > 15 and r > g and r > b
第二种:nr = r / (r + g + b), ng = g / (r + g + b), nb = b / (r +g + b)
, nr / ng > 1.185 and r * b / (r + g + b) ** 2 > 0.107 and r * g / (r + g + b) ** 2 > 0.112
HSV 颜色模式
h > 0 and h < 35 and s > 0.23 and s < 0.68
YCbCr 颜色模式
97.5 <= cb <= 142.5 and 134 <= cr <= 176
一幅图像有零个到多个的皮肤区域,程序按发现顺序给它们编号,第一个发现的区域编号为 0,第 n 个发现的区域编号为 n-1
我们用一种类型来表示像素,我们给这个类型取名为 Skin
,包含了像素的一些信息:唯一的 编号(id
),是/否肤色(skin
),皮肤区域号(region
),横坐标(x
),纵坐标(y
)
遍历所有像素时,我们为每个像素创建一个与之对应的 Skin
对象,并设置对象的所有属性
其中 region
属性即为像素所在的皮肤区域编号,创建对象时初始化为无意义的 None
关于每个像素的 id 值,左上角为原点,像素的 id 值按像素坐标排布,那么看起来如下图
其实 id 的顺序也即遍历的顺序
遍历所有像素时,创建 Skin
对象后,如果当前像素为肤色,且相邻的像素有肤色的,那么我们把这些肤色像素归到一个皮肤区域
相邻像素的定义:通常都能想到是当前像素周围的 8 个像素,然而实际上只需要定义 4 个就可以了,位置分别在当前像素的左方,左上方,正上方,右上方;因为另外四个像素都在当前像素后面,我们还未给这4个像素创建对应的 Skin 对象
接下来实现细节部分
导入所需要的模块
import sysimport osimport _iofrom collections import namedtuplefrom PIL import Image
我们将设计一个 Nude
类:
class Nude(object):
这个类里面我们首先使用 collections.namedtuple()
定义一个 Skin
类型
Skin = namedtuple("Skin", "id skin region x y")
collections.namedtuple()
函数实际上是一个返回Python中标准元组类型子类的一个工厂方法。 你需要传递一个类型名和你需要的字段给它,然后它就会返回一个类,你可以初始化这个类,为你定义的字段传递值等。 详情参见官方文档。
然后定义 Nude
类的初始化方法
def __init__(self, path_or_image): # 若 path_or_image 为 Image.Image 类型的实例,直接赋值 if isinstance(path_or_image, Image.Image): self.image = path_or_image # 若 path_or_image 为 str 类型的实例,打开图片 elif isinstance(path_or_image, str): self.image = Image.open(path_or_image) # 获得图片所有颜色通道 bands = self.image.getbands() # 判断是否为单通道图片(也即灰度图),是则将灰度图转换为 RGB 图 if len(bands) == 1: # 新建相同大小的 RGB 图像 new_img = Image.new("RGB", self.image.size) # 拷贝灰度图 self.image 到 RGB图 new_img.paste (PIL 自动进行颜色通道转换) new_img.paste(self.image) f = self.image.filename # 替换 self.image self.image = new_img self.image.filename = f # 存储对应图像所有像素的全部 Skin 对象 self.skin_map = [] # 检测到的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表 self.detected_regions = [] # 元素都是包含一些 int 对象(区域号)的列表 # 这些元素中的区域号代表的区域都是待合并的区域 self.merge_regions = [] # 整合后的皮肤区域,元素的索引即为皮肤区域号,元素都是包含一些 Skin 对象的列表 self.skin_regions = [] # 最近合并的两个皮肤区域的区域号,初始化为 -1 self.last_from, self.last_to = -1, -1 # 色情图像判断结果 self.result = None # 处理得到的信息 self.message = None # 图像宽高 self.width, self.height = self.image.size # 图像总像素 self.total_pixels = self.width * self.height
本实验代码中使用到的模块中的函数均可以在其模块的文档中找到,一定要培养查阅文档的习惯
isinstane(object, classinfo)
如果参数object
是参数classinfo
的实例,返回真,否则假;参数classinfo
可以是一个包含若干type
对象的元祖,如果参数object
是其中任意一个类型的实例,返回真,否则假
涉及到效率问题,越大的图片所需要消耗的资源与时间越大,因此有时候可能需要对图片进行缩小
所以需要有图片缩小方法
def resize(self, maxwidth=1000, maxheight=1000): """ 基于最大宽高按比例重设图片大小, 注意:这可能影响检测算法的结果 如果没有变化返回 0 原宽度大于 maxwidth 返回 1 原高度大于 maxheight 返回 2 原宽高大于 maxwidth, maxheight 返回 3 maxwidth - 图片最大宽度 maxheight - 图片最大高度 传递参数时都可以设置为 False 来忽略 """ # 存储返回值 ret = 0 if maxwidth: if self.width > maxwidth: wpercent = (maxwidth / self.width) hsize = int((self.height * wpercent)) fname = self.image.filename # Image.LANCZOS 是重采样滤波器,用于抗锯齿 self.image = self.image.resize((maxwidth, hsize), Image.LANCZOS) self.image.filename = fname self.width, self.height = self.image.size self.total_pixels = self.width * self.height ret += 1 if maxheight: if self.height > maxheight: hpercent = (maxheight / float(self.height)) wsize = int((float(self.width) * float(hpercent))) fname = self.image.filename self.image = self.image.resize((wsize, maxheight), Image.LANCZOS) self.image.filename = fname self.width, self.height = self.image.size self.total_pixels = self.width * self.height ret += 2 return ret
Image.resize(size, resample=0)
size – 包含宽高像素数的元祖 (width, height) resample – 可选的重采样滤波器
返回
Image
对象
然后便是最关键之一的解析方法了
def parse(self): # 如果已有结果,返回本对象 if self.result is not None: return self # 获得图片所有像素数据 pixels = self.image.load()
接着,遍历每个像素,为每个像素创建对应的 Skin
对象,代码见下
其中 self._classify_skin()
这个方法是检测像素颜色是否为肤色
for y in range(self.height): for x in range(self.width): # 得到像素的 RGB 三个通道的值 # [x, y] 是 [(x,y)] 的简便写法 r = pixels[x, y][0] # red g = pixels[x, y][1] # green b = pixels[x, y][2] # blue # 判断当前像素是否为肤色像素 isSkin = True if self._classify_skin(r, g, b) else False # 给每个像素分配唯一 id 值(1, 2, 3...height*width) # 注意 x, y 的值从零开始 _id = x + y * self.width + 1 # 为每个像素创建一个对应的 Skin 对象,并添加到 self.skin_map 中 self.skin_map.append(self.Skin(_id, isSkin, None, x, y))
若当前像素并不是肤色,那么跳过本次循环,继续遍历
# 若当前像素不为肤色像素,跳过此次循环 if not isSkin: continue
若当前像素是肤色像素,那么就需要处理了,先遍历其相邻像素
一定要注意相邻像素的索引值,因为像素的 id
值是从 1 开始编起的,而索引是从 0 编起的。变量 _id
是存有当前像素的id
值, 所以当前像素在 self.skin_map
中的索引值为 _id - 1
,以此类推,那么其左方的相邻像素在 self.skin_map
中的索引值为 _id - 1 - 1
,左上方为 _id - 1 - self.width - 1
,上方为 _id - 1 - self.width
,右上方为 _id - 1 - self.width + 1
# 设左上角为原点,相邻像素为符号 *,当前像素为符号 ^,那么相互位置关系通常如下图 # *** # *^ # 存有相邻像素索引的列表,存放顺序为由大到小,顺序改变有影响 # 注意 _id 是从 1 开始的,对应的索引则是 _id-1 check_indexes = [_id - 2, # 当前像素左方的像素 _id - self.width - 2, # 当前像素左上方的像素 _id - self.width - 1, # 当前像素的上方的像素 _id - self.width] # 当前像素右上方的像素
说起来复杂,其实看上面代码并不复杂,说这么多是怕同学搞混,你要是觉得有点绕的话,你也可以把 id
值从 0 编起
# 用来记录相邻像素中肤色像素所在的区域号,初始化为 -1 region = -1 # 遍历每一个相邻像素的索引 for index in check_indexes: # 尝试索引相邻像素的 Skin 对象,没有则跳出循环 try: self.skin_map[index] except IndexError: break # 相邻像素若为肤色像素: if self.skin_map[index].skin: # 若相邻像素与当前像素的 region 均为有效值,且二者不同,且尚未添加相同的合并任务 if (self.skin_map[index].region != None and region != None and region != -1 and self.skin_map[index].region != region and self.last_from != region and self.last_to != self.skin_map[index].region) : # 那么这添加这两个区域的合并任务 self._add_merge(region, self.skin_map[index].region) # 记录此相邻像素所在的区域号 region = self.skin_map[index].region
self._add_merge()
这个方法接收两个区域号,它将会把两个区域号添加到 self.merge_regions
中的元素中,self.merge_regions
的每一个元素都是一个列表,这些列表中存放了 1 到多个的区域号,区域号代表的区域是连通的,需要合并
检测的图像里,有些前几行的像素的相邻像素并没有 4 个,所以需要用 try
“试错”
然后相邻像素的若是肤色像素,如果两个像素的皮肤区域号都为有效值且不同,因为两个区域中的像素相邻,那么其实这两个区域是连通的,说明需要合并这两个区域。记录下此相邻肤色像素的区域号,之后便可以将当前像素归到这个皮肤区域里了。
遍历完所有相邻像素后,分两种情况处理
# 遍历完所有相邻像素后,若 region 仍等于 -1,说明所有相邻像素都不是肤色像素 if region == -1: # 更改属性为新的区域号,注意元祖是不可变类型,不能直接更改属性 _skin = self.skin_map[_id - 1]._replace(region=len(self.detected_regions)) self.skin_map[_id - 1] = _skin # 将此肤色像素所在区域创建为新区域 self.detected_regions.append([self.skin_map[_id - 1]]) # region 不等于 -1 的同时不等于 None,说明有区域号为有效值的相邻肤色像素 elif region != None: # 将此像素的区域号更改为与相邻像素相同 _skin = self.skin_map[_id - 1]._replace(region=region) self.skin_map[_id - 1] = _skin # 向这个区域的像素列表中添加此像素 self.detected_regions[region].append(self.skin_map[_id - 1])
somenamedtuple._replace(kwargs)
返回一个替换指定字段的值为参数的namedtuple
实例
遍历完所有像素之后,图片的皮肤区域划分初步完成了,只是在变量 self.merge_regions
中还有一些连通的皮肤区域号,它们需要合并,合并之后就可以进行色情图片判定了
# 完成所有区域合并任务,合并整理后的区域存储到 self.skin_regions self._merge(self.detected_regions, self.merge_regions) # 分析皮肤区域,得到判定结果 self._analyse_regions() return self
方法 self._merge()
便是用来合并这些连通的皮肤区域的
方法 self._analyse_regions()
,运用之前在程序原理一节定义的非色情图像判定规则,从而得到判定结果
现在编写我们还没写过的调用过的 Nude
类的方法
首先是 self._classify_skin()
方法,这个方法是检测像素颜色是否为肤色,之前在程序原理一节已经把肤色判定该公式列举了出来,现在是用的时候了
# 基于像素的肤色检测技术def _classify_skin(self, r, g, b): # 根据RGB值判定 rgb_classifier = r > 95 and \ g > 40 and g < 100 and \ b > 20 and \ max([r, g, b]) - min([r, g, b]) > 15 and \ abs(r - g) > 15 and \ r > g and \ r > b # 根据处理后的 RGB 值判定 nr, ng, nb = self._to_normalized(r, g, b) norm_rgb_classifier = nr / ng > 1.185 and \ float(r * b) / ((r + g + b) ** 2) > 0.107 and \ float(r * g) / ((r + g + b) ** 2) > 0.112 # HSV 颜色模式下的判定 h, s, v = self._to_hsv(r, g, b) hsv_classifier = h > 0 and \ h < 35 and \ s > 0.23 and \ s < 0.68 # YCbCr 颜色模式下的判定 y, cb, cr = self._to_ycbcr(r, g, b) ycbcr_classifier = 97.5 <= cb <= 142.5 and 134 <= cr <= 176 # 效果不是很好,还需改公式 # return rgb_classifier or norm_rgb_classifier or hsv_classifier or ycbcr_classifier return ycbcr_classifier
颜色模式的转换并不是本实验的重点,转换公式可以在网上找到,这里我们直接拿来用就行
def _to_normalized(self, r, g, b): if r == 0: r = 0.0001 if g == 0: g = 0.0001 if b == 0: b = 0.0001 _sum = float(r + g + b) return [r / _sum, g / _sum, b / _sum]def _to_ycbcr(self, r, g, b): # 公式来源: # http://stackoverflow.com/questions/19459831/rgb-to-ycbcr-conversion-problems y = .299*r + .587*g + .114*b cb = 128 - 0.168736*r - 0.331364*g + 0.5*b cr = 128 + 0.5*r - 0.418688*g - 0.081312*b return y, cb, crdef _to_hsv(self, r, g, b): h = 0 _sum = float(r + g + b) _max = float(max([r, g, b])) _min = float(min([r, g, b])) diff = float(_max - _min) if _sum == 0: _sum = 0.0001 if _max == r: if diff == 0: h = sys.maxsize else: h = (g - b) / diff elif _max == g: h = 2 + ((g - r) / diff) else: h = 4 + ((r - g) / diff) h *= 60 if h < 0: h += 360 return [h, 1.0 - (3.0 * (_min / _sum)), (1.0 / 3.0) * _max]
self._add_merge()
方法主要是对 self.merge_regions
操作,而self.merge_regions 的元素都是包含一些 int 对象(区域号)的列表,列表中的区域号代表的区域都是待合并的区域
self._add_merge()
方法接收两个区域号,将之添加到 self.merge_regions
中
这两个区域号以怎样的形式添加,要分3种情况处理,
self.merge_regions
中self.merge_regions
中self.merge_regions
中具体的处理方法,见代码
def _add_merge(self, _from, _to): # 两个区域号赋值给类属性 self.last_from = _from self.last_to = _to # 记录 self.merge_regions 的某个索引值,初始化为 -1 from_index = -1 # 记录 self.merge_regions 的某个索引值,初始化为 -1 to_index = -1 # 遍历每个 self.merge_regions 的元素 for index, region in enumerate(self.merge_regions): # 遍历元素中的每个区域号 for r_index in region: if r_index == _from: from_index = index if r_index == _to: to_index = index # 若两个区域号都存在于 self.merge_regions 中 if from_index != -1 and to_index != -1: # 如果这两个区域号分别存在于两个列表中 # 那么合并这两个列表 if from_index != to_index: self.merge_regions[from_index].extend(self.merge_regions[to_index]) del(self.merge_regions[to_index]) return # 若两个区域号都不存在于 self.merge_regions 中 if from_index == -1 and to_index == -1: # 创建新的区域号列表 self.merge_regions.append([_from, _to]) return # 若两个区域号中有一个存在于 self.merge_regions 中 if from_index != -1 and to_index == -1: # 将不存在于 self.merge_regions 中的那个区域号 # 添加到另一个区域号所在的列表 self.merge_regions[from_index].append(_to) return # 若两个待合并的区域号中有一个存在于 self.merge_regions 中 if from_index == -1 and to_index != -1: # 将不存在于 self.merge_regions 中的那个区域号 # 添加到另一个区域号所在的列表 self.merge_regions[to_index].append(_from) return
在序列中循环时,索引位置和对应值可以使用 enumerate() 函数同时得到,在上面的代码中,索引位置即为 index
,对应值即为region
self._merge()
方法则是将 self.merge_regions
中的元素中的区域号所代表的区域合并,得到新的皮肤区域列表
def _merge(self, detected_regions, merge_regions): # 新建列表 new_detected_regions # 其元素将是包含一些代表像素的 Skin 对象的列表 # new_detected_regions 的元素即代表皮肤区域,元素索引为区域号 new_detected_regions = [] # 将 merge_regions 中的元素中的区域号代表的所有区域合并 for index, region in enumerate(merge_regions): try: new_detected_regions[index] except IndexError: new_detected_regions.append([]) for r_index in region: new_detected_regions[index].extend(detected_regions[r_index]) detected_regions[r_index] = [] # 添加剩下的其余皮肤区域到 new_detected_regions for region in detected_regions: if len(region) > 0: new_detected_regions.append(region) # 清理 new_detected_regions self._clear_regions(new_detected_regions) # 添加剩下的其余皮肤区域到 new_detected_regions for region in detected_regions: if len(region) > 0: new_detected_regions.append(region) # 清理 new_detected_regions self._clear_regions(new_detected_regions)
self._clear_regions()
方法只将像素数大于指定数量的皮肤区域保留到 self.skin_regions
# 皮肤区域清理函数# 只保存像素数大于指定数量的皮肤区域def _clear_regions(self, detected_regions): for region in detected_regions: if len(region) > 30: self.skin_regions.append(region)
self._analyse_regions()
是很简单的,它的工作只是进行一系列判断,得出图片是否色情的结论
# 分析区域def _analyse_regions(self): # 如果皮肤区域小于 3 个,不是色情 if len(self.skin_regions) < 3: self.message = "Less than 3 skin regions ({_skin_regions_size})".format( _skin_regions_size=len(self.skin_regions)) self.result = False return self.result # 为皮肤区域排序 self.skin_regions = sorted(self.skin_regions, key=lambda s: len(s), reverse=True) # 计算皮肤总像素数 total_skin = float(sum([len(skin_region) for skin_region