第一个线性回归程序(基于Jupyter)

import pandas as pd
import seaborn as sns
sns.set(context="notebook", style="whitegrid", palette="dark")
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

df = pd.read_csv('ex1data1.txt', names=['population', 'profit'])#读取数据并赋予列名

df.head()#看前五行

df.info()

sns.lmplot('population', 'profit', df, size=6, fit_reg=False)
plt.show()

def get_X(df):#读取特征
ones = pd.DataFrame({'ones': np.ones(len(df))})#ones是m行1列的dataframe
data = pd.concat([ones, df], axis=1) # 合并数据,根据列合并
return data.iloc[:, :-1].as_matrix() # 这个操作返回 ndarray,不是矩阵

def get_y(df):#读取标签
return np.array(df.iloc[:, -1])

def normalize_feature(df):
return df.apply(lambda column: (column - column.mean()) / column.std())#特征缩放

def linear_regression(X_data, y_data, alpha, epoch, optimizer=tf.train.GradientDescentOptimizer):# 这个函数是旧金山的一个大神Lucas Shen写的
# placeholder for graph input
X = tf.placeholder(tf.float32, shape=X_data.shape)
y = tf.placeholder(tf.float32, shape=y_data.shape)

# construct the graph
with tf.variable_scope('linear-regression'):
W = tf.get_variable("weights",
(X_data.shape[1], 1),
initializer=tf.constant_initializer()) # n*1

y_pred = tf.matmul(X, W) # m*n @ n*1 -> m*1

loss = 1 / (2 * len(X_data)) * tf.matmul((y_pred - y), (y_pred - y), transpose_a=True) # (m*1).T @ m*1 = 1*1

opt = optimizer(learning_rate=alpha)
opt_operation = opt.minimize(loss)

# run the session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
loss_data = []

for i in range(epoch):
_, loss_val, W_val = sess.run([opt_operation, loss, W], feed_dict={X: X_data, y: y_data})
loss_data.append(loss_val[0, 0]) # because every loss_val is 1*1 ndarray

if len(loss_data) > 1 and np.abs(loss_data[-1] - loss_data[-2]) < 10 ** -9: # early break when it's converged
# print('Converged at epoch {}'.format(i))
break

# clear the graph
tf.reset_default_graph()
return {'loss': loss_data, 'parameters': W_val} # just want to return in row vector format

data = pd.read_csv('ex1data1.txt', names=['population', 'profit'])#读取数据,并赋予列名

data.head()#看下数据前5行

X = get_X(data)
print(X.shape, type(X))

y = get_y(data)
print(y.shape, type(y))
#看下数据维度

theta = np.zeros(X.shape[1])#X.shape[1]=2,代表特征数n

def lr_cost(theta, X, y):
# """
# X: R(m*n), m 样本数, n 特征数
# y: R(m)
# theta : R(n), 线性回归的参数
# """
m = X.shape[0]#m为样本数

inner = X @ theta - y # R(m*1),X @ theta等价于X.dot(theta)

# 1*m @ m*1 = 1*1 in matrix multiplication
# but you know numpy didn't do transpose in 1d array, so here is just a
# vector inner product to itselves
square_sum = inner.T @ inner
cost = square_sum / (2 * m)

return cost

lr_cost(theta, X, y)#返回theta的值

def gradient(theta, X, y):
m = X.shape[0]

inner = X.T @ (X @ theta - y) # (m,n).T @ (m, 1) -> (n, 1),X @ theta等价于X.dot(theta)

return inner / m

def batch_gradient_decent(theta, X, y, epoch, alpha=0.01):
# 拟合线性回归,返回参数和代价
# epoch: 批处理的轮数
# """
cost_data = [lr_cost(theta, X, y)]
_theta = theta.copy() # 拷贝一份,不和原来的theta混淆

for _ in range(epoch):
_theta = _theta - alpha * gradient(_theta, X, y)
cost_data.append(lr_cost(_theta, X, y))

return _theta, cost_data
#批量梯度下降函数

epoch = 500
final_theta, cost_data = batch_gradient_decent(theta, X, y, epoch)

final_theta
#最终的theta

cost_data
# 看下代价数据

# 计算最终的代价
lr_cost(final_theta, X, y)

ax = sns.tsplot(cost_data, time=np.arange(epoch+1))
ax.set_xlabel('epoch')
ax.set_ylabel('cost')
plt.show()
#可以看到从第二轮代价数据变换很大,接下来平稳了

b = final_theta[0] # intercept,Y轴上的截距
m = final_theta[1] # slope,斜率

plt.scatter(data.population, data.profit, label="Training data")
plt.plot(data.population, data.population*m + b, label="Prediction")
plt.legend(loc=2)
plt.show()

 

转载于:https://www.cnblogs.com/pandeng/p/9853293.html

你可能感兴趣的:(第一个线性回归程序(基于Jupyter))