深入解析中间件之-Canal

canal: 阿里巴巴mysql数据库binlog的增量订阅&消费组件

MySQL binlog

MySQL主从复制

mysql服务端修改配置并重启

$ vi /etc/my.cnf
[mysqld]
log-bin=mysql-bin
binlog-format=ROW
server_id=1

$ mysql -uroot
CREATE USER canal IDENTIFIED BY 'canal';  
GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;
FLUSH PRIVILEGES;

$ sudo service mysqld start
问题:创建canal用户的目的是什么?直接使用现有的用户名可以吗,比如root。
答案:有些用户没有REPLICATION SLAVE, REPLICATION CLIENT的权限,用这些用户连接canal时,无法获取到binlog。
这里的canal用户授权了全部权限,所以客户端可以从canal中获取binlog。

明确两个概念:canal server连接mysql,客户端连接canal server。

  • canal指的是canal server,它会读取mysql的binlog,解析后存储起来
  • 客户端指的是消费canal server的binlog

本机连接服务端,验证binlog的格式是ROW

$ mysql -h192.168.6.52 -ucanal -pcanal
mysql> show variables like '%binlog_format%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| binlog_format | ROW   |
+---------------+-------+

mysql主从复制的原理:

  • master将改变记录到二进制日志(binary log)中;
  • slave将master的binary log events拷贝到它的中继日志(relay log);
  • slave重做中继日志中的事件,将改变反映它自己的数据。

深入解析中间件之-Canal_第1张图片

binlog

在启动canal之前,先来了解下什么是mysql的binlog:

mysql> show binlog events;
| Log_name         | Pos   | Event_type  | Server_id | End_log_pos | Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
+------------------+-------+-------------+-----------+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| mysql-bin.000001 |     4 | Format_desc |         1 |         106 | Server ver: 5.1.73-log, Binlog ver: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mysql-bin.000001 |   106 | Query       |         1 |        1864 | use `mysql`; CREATE TABLE IF NOT EXISTS db (   Host char(60) binary DEFAULT '' NOT NULL, Db char(64) binary DEFAULT '' NOT NULL, User char(16) binary DEFAULT '' NOT NULL, Select_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Insert_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Update_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Delete_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Drop_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Grant_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, References_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Index_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Alter_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_tmp_table_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Lock_tables_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_view_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Show_view_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_routine_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Alter_routine_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Execute_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Event_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Trigger_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, PRIMARY KEY Host (Host,Db,User), KEY User (User) ) engine=MyISAM CHARACTER SET utf8 COLLATE utf8_bin comment='Database privileges' |
| mysql-bin.000001 |  1864 | Query       |         1 |        3518 | use `mysql`; CREATE TABLE IF NOT EXISTS host (  Host char(60) binary DEFAULT '' NOT NULL, Db char(64) binary DEFAULT '' NOT NULL, Select_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Insert_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Update_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Delete_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Drop_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Grant_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, References_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Index_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Alter_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_tmp_table_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Lock_tables_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_view_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Show_view_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Create_routine_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Alter_routine_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Execute_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, Trigger_priv enum('N','Y') COLLATE utf8_general_ci DEFAULT 'N' NOT NULL, PRIMARY KEY Host (Host,Db) ) engine=MyISAM CHARACTER SET utf8 COLLATE utf8_bin comment='Host privileges;  Merged with database privileges' |

mysql数据文件下会生成mysql-bin.xxx的binlog文件,以及索引文件

[qihuang.zheng@dp0652 canal]$ ll /var/lib/mysql/
总用量 26228
drwx------ 2 mysql mysql     4096 10月 11 14:05 canal_test
-rw-rw---- 1 mysql mysql 10485760 9月  30 22:12 ibdata1
-rw-rw---- 1 mysql mysql  5242880 10月 11 09:57 ib_logfile0
-rw-rw---- 1 mysql mysql  5242880 10月 11 09:57 ib_logfile1
drwx------ 2 mysql mysql     4096 8月   2 11:01 mysql
-rw-rw---- 1 mysql mysql    18451 8月   2 11:01 mysql-bin.000001
-rw-rw---- 1 mysql mysql   929226 8月   2 11:01 mysql-bin.000002
-rw-rw---- 1 mysql mysql  4890698 9月  30 22:12 mysql-bin.000003
-rw-rw---- 1 mysql mysql      897 10月 11 14:06 mysql-bin.000004
-rw-rw---- 1 mysql mysql       76 10月 11 09:57 mysql-bin.index
srwxrwxrwx 1 mysql mysql        0 10月 11 09:57 mysql.sock

针对mysql的操作都会有二进制的事件记录到binlog文件中。下面的一些操作包括创建用户,授权,创建数据库,创建表,插入一条记录。

[qihuang.zheng@dp0652 canal]$ sudo strings /var/lib/mysql/mysql-bin.000004
5.1.73-log
CREATE USER canal IDENTIFIED BY 'canal'
root    localhost
GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%'
FLUSH PRIVILEGES
canal_test
create database canal_test    ===》创建数据库
canal_test
create table test (   uid int (4) primary key not null auto_increment,   name varchar(10) not null)  ==》创建表
canal_test
BEGIN     ==》插入记录,这里有事务。但是没有把具体的语句打印出来
canal_test
test
canal_test
COMMIT

Canal QuickStart

canal & config

部署canal server到6.52,并启动。查看canal的日志:

[qihuang.zheng@dp0652 canal]$ cat logs/canal/canal.log
2017-10-11 11:31:52.076 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-11 11:31:52.151 [main] INFO  com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11111]
2017-10-11 11:31:52.644 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......

查看instance的日志:

[qihuang.zheng@dp0652 canal]$ cat logs/example/example.log
2017-10-11 11:31:52.435 [main] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-11 11:31:52.444 [main] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-11 11:31:52.587 [main] INFO  c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-11 11:31:52.599 [main] INFO  c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-11 11:31:52.679 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN  c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just show master status

canal server的conf下有几个配置文件

➜  canal.deployer-1.0.24 tree conf
conf
├── canal.properties
├── example
│   └── instance.properties
├── logback.xml
└── spring
    ├── default-instance.xml
    ├── file-instance.xml
    ├── group-instance.xml
    ├── local-instance.xml
    └── memory-instance.xml

先来看canal.properties的common属性前四个配置项:

canal.id= 1
canal.ip=
canal.port= 11111
canal.zkServers=

canal.id是canal的编号,在集群环境下,不同canal的id不同,注意它和mysql的server_id不同。
ip这里不指定,默认为本机,比如上面是192.168.6.52,端口号是11111。zk用于canal cluster。

再看下canal.properties下destinations相关的配置:

#################################################
#########       destinations        ############# 
#################################################
canal.destinations = example
canal.conf.dir = ../conf
canal.auto.scan = true
canal.auto.scan.interval = 5

canal.instance.global.mode = spring 
canal.instance.global.lazy = false
canal.instance.global.spring.xml = classpath:spring/file-instance.xml

这里的canal.destinations = example可以设置多个,比如example1,example2,
则需要创建对应的两个文件夹,并且每个文件夹下都有一个instance.properties文件。

全局的canal实例管理用spring,这里的file-instance.xml最终会实例化所有的destinations instances:


    
    
    
        
            classpath:canal.properties
            classpath:${canal.instance.destination:}/instance.properties
        
    


    
    
    
    
    
    

比如canal.instance.destination等于example,就会加载example/instance.properties配置文件

example下instance.properties配置文件不需要修改。一个canal server可以运行多个canal instance。

#################################################
## mysql serverId,这里的slaveId不能和myql集群中已有的server_id一样
canal.instance.mysql.slaveId = 1234

# position info 这里连接的是mysql master的地址。
canal.instance.master.address = 127.0.0.1:3306
canal.instance.master.journal.name = 
canal.instance.master.position = 
canal.instance.master.timestamp = 

#canal.instance.standby.address = 
#canal.instance.standby.journal.name =
#canal.instance.standby.position = 
#canal.instance.standby.timestamp = 

# username/password
canal.instance.dbUsername = canal
canal.instance.dbPassword = canal
canal.instance.defaultDatabaseName =
canal.instance.connectionCharset = UTF-8

canal.instance.filter.regex = .*\\..*
canal.instance.filter.black.regex =  
#################################################

simple client

在mysql上创建数据库,创建表,插入一条记录,再修改记录。

create database canal_test;
use canal_test;
create table test (   uid int (4) primary key not null auto_increment,   name varchar(10) not null);
insert into test (name) values('10');

修改客户端测试例子的连接信息。其中example对应了canal实例的名称。

String destination = "example";
CanalConnector connector = CanalConnectors.newSingleConnector(
    new InetSocketAddress("192.168.6.52", 11111), destination, "canal", "canal");

注意:如果连接有错误,客户端测试例子会立即结束,打印## stop the canal client。正常的话,终端不会退出,会一直运行。

SimpleCanalClientTest控制台的结果如下:

****************************************************
* Batch Id: [1] ,count : [2] , memsize : [263] , Time : 2017-10-11 14:06:06
* Start : [mysql-bin.000004:396:1507701897000(2017-10-11 14:04:57)] 
* End : [mysql-bin.000004:491:1507701904000(2017-10-11 14:05:04)] 
****************************************************

----------------> binlog[mysql-bin.000004:396] , name[canal_test,] , eventType : QUERY , executeTime : 1507701897000 , delay : 69710ms
 sql ----> create database canal_test

----------------> binlog[mysql-bin.000004:491] , name[canal_test,test] , eventType : CREATE , executeTime : 1507701904000 , delay : 62723ms
 sql ----> create table test (   uid int (4) primary key not null auto_increment,   name varchar(10) not null)

插入一条记录:(其中uid和name的update都等于true)

****************************************************
* Batch Id: [2] ,count : [3] , memsize : [186] , Time : 2017-10-11 14:06:32
* Start : [mysql-bin.000004:659:1507701989000(2017-10-11 14:06:29)] 
* End : [mysql-bin.000004:822:1507701989000(2017-10-11 14:06:29)] 
****************************************************

================> binlog[mysql-bin.000004:659] , executeTime : 1507701989000 , delay : 3142ms
 BEGIN ----> Thread id: 11
----------------> binlog[mysql-bin.000004:785] , name[canal_test,test] , eventType : INSERT , executeTime : 1507701989000 , delay : 3154ms
uid : 1    type=int(4)    update=true
name : 10    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:822] , executeTime : 1507701989000 , delay : 3179ms

修改记录:(其中name的update等于true)

****************************************************
* Batch Id: [3] ,count : [3] , memsize : [202] , Time : 2017-10-11 14:49:11
* Start : [mysql-bin.000004:897:1507704547000(2017-10-11 14:49:07)] 
* End : [mysql-bin.000004:1076:1507704547000(2017-10-11 14:49:07)] 
****************************************************

================> binlog[mysql-bin.000004:897] , executeTime : 1507704547000 , delay : 4048ms
 BEGIN ----> Thread id: 13
----------------> binlog[mysql-bin.000004:1023] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507704547000 , delay : 4059ms
uid : 1    type=int(4)
name : zqhxuyuan    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:1076] , executeTime : 1507704547000 , delay : 4096ms

canal安装包下的example instance下除了example.log外,还有一个meta.log

[qihuang.zheng@dp0652 canal]$ cat logs/example/meta.log
2017-10-11 14:06:03.728 - clientId:1001 cursor:[mysql-bin.000004,396,1507701897000] address[/127.0.0.1:3306]
2017-10-11 14:06:04.589 - clientId:1001 cursor:[mysql-bin.000004,491,1507701904000] address[localhost/127.0.0.1:3306]
2017-10-11 14:06:29.589 - clientId:1001 cursor:[mysql-bin.000004,822,1507701989000] address[localhost/127.0.0.1:3306]
2017-10-11 14:49:08.589 - clientId:1001 cursor:[mysql-bin.000004,1076,1507704547000] address[localhost/127.0.0.1:3306]

Cannal Internal Overview

canal client & server

canal client与canal server之间是C/S模式的通信,客户端采用NIO,服务端采用Netty。
canal server启动后,如果没有canal client,那么canal server不会去mysql拉取binlog。

try {
    connector.connect();
    connector.subscribe();
    while (running) {
        Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据
        long batchId = message.getId();
        int size = message.getEntries().size();
        printSummary(message, batchId, size);
        printEntry(message.getEntries());
        connector.ack(batchId); // 提交确认
        connector.rollback(batchId); // 处理失败, 回滚数据
    }
} finally {
    connector.disconnect();
}

canal client与canal server之间属于增量订阅/消费,流程图如下:(其中C端是canal client,S端是canal server)

深入解析中间件之-Canal_第2张图片

canal client调用connect()方法时,类型为PacketType.HANDSHAKE,接着写入CLIENTAUTHENTICATION。然后调用subscribe()方法,类型为SUBSCRIPTION。

对应服务端采用netty处理RPC请求(CanalServerWithNetty):

bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
    public ChannelPipeline getPipeline() throws Exception {
        ChannelPipeline pipelines = Channels.pipeline();
        pipelines.addLast(FixedHeaderFrameDecoder.class.getName(), new FixedHeaderFrameDecoder());
        // 处理客户端的HANDSHAKE请求
        pipelines.addLast(HandshakeInitializationHandler.class.getName(),
            new HandshakeInitializationHandler(childGroups));
        // 处理客户端的CLIENTAUTHENTICATION请求
        pipelines.addLast(ClientAuthenticationHandler.class.getName(),
            new ClientAuthenticationHandler(embeddedServer));

        // 处理客户端的会话请求,包括SUBSCRIPTION,GET等
        SessionHandler sessionHandler = new SessionHandler(embeddedServer);
        pipelines.addLast(SessionHandler.class.getName(), sessionHandler);
        return pipelines;
    }
});

ClientAuthenticationHandler处理鉴权后,会移除HandshakeInitializationHandler和ClientAuthenticationHandler

以client发送GET,server从mysql得到binlog后,返回MESSAGES给client为例,说明client和server的rpc交互过程:

SimpleCanalConnector发送GET请求,并读取响应结果的流程:

public Message getWithoutAck(int batchSize, Long timeout, TimeUnit unit) throws CanalClientException {
    waitClientRunning();
    int size = (batchSize <= 0) ? 1000 : batchSize;
    long time = (timeout == null || timeout < 0) ? -1 : timeout; // -1代表不做timeout控制
    if (unit == null) unit = TimeUnit.MILLISECONDS;

    // client发送GET请求
    writeWithHeader(Packet.newBuilder()
        .setType(PacketType.GET)
        .setBody(Get.newBuilder()
            .setAutoAck(false)
            .setDestination(clientIdentity.getDestination())
            .setClientId(String.valueOf(clientIdentity.getClientId()))
            .setFetchSize(size)
            .setTimeout(time)
            .setUnit(unit.ordinal())
            .build()
            .toByteString())
        .build()
        .toByteArray());
    // client获取GET结果    
    return receiveMessages();
}

private Message receiveMessages() throws IOException {
    // 读取server发送的数据包
    Packet p = Packet.parseFrom(readNextPacket());
    switch (p.getType()) {
        case MESSAGES: {
            Messages messages = Messages.parseFrom(p.getBody());
            Message result = new Message(messages.getBatchId());
            for (ByteString byteString : messages.getMessagesList()) {
                result.addEntry(Entry.parseFrom(byteString));
            }
            return result;
        }
    }
}

服务端SessionHandler处理客户端发送的GET请求流程:

case GET:
    // 读取客户端发送的数据包,封装为Get对象
    Get get = CanalPacket.Get.parseFrom(packet.getBody());
    // destination表示canal instance
    if (StringUtils.isNotEmpty(get.getDestination()) && StringUtils.isNotEmpty(get.getClientId())) {
        clientIdentity = new ClientIdentity(get.getDestination(), Short.valueOf(get.getClientId()));
        Message message = null;
        if (get.getTimeout() == -1) {// 是否是初始值
            message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize());
        } else {
            TimeUnit unit = convertTimeUnit(get.getUnit());
            message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize(), get.getTimeout(), unit);
        }
        // 设置返回给客户端的数据包类型为MESSAGES   
        Packet.Builder packetBuilder = CanalPacket.Packet.newBuilder();
        packetBuilder.setType(PacketType.MESSAGES);
        // 构造Message
        Messages.Builder messageBuilder = CanalPacket.Messages.newBuilder();
        messageBuilder.setBatchId(message.getId());
        if (message.getId() != -1 && !CollectionUtils.isEmpty(message.getEntries())) {
            for (Entry entry : message.getEntries()) {
                messageBuilder.addMessages(entry.toByteString());
            }
        }
        packetBuilder.setBody(messageBuilder.build().toByteString());
        // 输出数据,返回给客户端
        NettyUtils.write(ctx.getChannel(), packetBuilder.build().toByteArray(), null);
    }

get/ack/rollback协议介绍:

  • Message getWithoutAck(int batchSize),允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:
    – batch id 唯一标识
    – entries 具体的数据对象,对应的数据对象格式:EntryProtocol.proto
  • void rollback(long batchId),顾命思议,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作
  • void ack(long batchId),顾命思议,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作

EntryProtocol.protod对应的canal消息结构如下:

Entry  
    Header  
        logfileName [binlog文件名]  
        logfileOffset [binlog position]  
        executeTime [binlog里记录变更发生的时间戳,精确到秒]  
        schemaName   
        tableName  
        eventType [insert/update/delete类型]  
    entryType   [事务头BEGIN/事务尾END/数据ROWDATA]  
    storeValue  [byte数据,可展开,对应的类型为RowChange]  
      
RowChange  
    isDdl       [是否是ddl变更操作,比如create table/drop table]  
    sql         [具体的ddl sql]  
    rowDatas    [具体insert/update/delete的变更数据,可为多条,1个binlog event事件可对应多条变更,比如批处理]  
        beforeColumns [Column类型的数组,变更前的数据字段]  
        afterColumns [Column类型的数组,变更后的数据字段]  
          
Column   
    index         
    sqlType     [jdbc type]  
    name        [column name]  
    isKey       [是否为主键]  
    updated     [是否发生过变更]  
    isNull      [值是否为null]  
    value       [具体的内容,注意为string文本]

SessionHandler中服务端处理客户端的其他类型请求,都会调用CanalServerWithEmbedded的相关方法:

case SUBSCRIPTION:
        Sub sub = Sub.parseFrom(packet.getBody());
        embeddedServer.subscribe(clientIdentity);
case GET:
        Get get = CanalPacket.Get.parseFrom(packet.getBody());
        message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize());
case CLIENTACK:
        ClientAck ack = CanalPacket.ClientAck.parseFrom(packet.getBody());
        embeddedServer.ack(clientIdentity, ack.getBatchId());
case CLIENTROLLBACK:
        ClientRollback rollback = CanalPacket.ClientRollback.parseFrom(packet.getBody());
        embeddedServer.rollback(clientIdentity);// 回滚所有批次

CanalServerWithEmbedded

CanalServer包含多个Instance,它的成员变量canalInstances记录了instance名称与实例的映射关系。
因为是一个Map,所以同一个Server不允许出现相同instance名称,比如不能同时有两个example在一个server上。

public class CanalServerWithEmbedded extends AbstractCanalLifeCycle implements CanalServer, CanalService {
    private Map canalInstances;
    private CanalInstanceGenerator     canalInstanceGenerator;
}

下图表示一个server有两个instance,每个Client连接一个Instance。
每个Canal实例模拟为一个MySQL的slave,所以每个Instance的slaveId必须不一样。比如图中两个Instance的id分别是1234和1235。

深入解析中间件之-Canal_第3张图片

注意这里每个Canal Client都对应一个Instance,每个Client在启动时,都会指定一个Destination,这个Destination就表示Instance的名称。
所以CanalServerWithEmbedded处理各种请求时的参数都有ClientIdentity,从ClientIdentity中获取destination,就可以获取出对应的CanalInstance

下面以CanalServerWithEmbedded的订阅方法为例:

public void subscribe(ClientIdentity clientIdentity) throws CanalServerException {
    // ClientIdentity表示Canal Client客户端,从中可以获取出客户端指定连接的Destination
    // 由于CanalServerWithEmbedded记录了每个Destination对应的Instance,可以获取客户端对应的Instance
    CanalInstance canalInstance = canalInstances.get(clientIdentity.getDestination());
    if (!canalInstance.getMetaManager().isStart()) {
        canalInstance.getMetaManager().start(); // 启动Instance的元数据管理器
    }
    canalInstance.getMetaManager().subscribe(clientIdentity); // 执行一下meta订阅
    Position position = canalInstance.getMetaManager().getCursor(clientIdentity);
    if (position == null) {
        position = canalInstance.getEventStore().getFirstPosition();// 获取一下store中的第一条
        if (position != null) {
            canalInstance.getMetaManager().updateCursor(clientIdentity, position); // 更新一下cursor
        }
    }
    // 通知下订阅关系变化
    canalInstance.subscribeChange(clientIdentity);
}

每个CanalInstance中包括了四个组件:EventParser、EventSink、EventStore、MetaManager。

服务端主要的处理方法包括get/ack/rollback,这三个方法都会用到Instance上面的几个内部组件,主要还是EventStore和MetaManager:

在这之前,要先理解EventStore的含义,EventStore是一个RingBuffer,有三个指针:Put、Get、Ack。

  • Put: Canal Server从MySQL拉取到数据后,放到内存中,Put增加
  • Get: 消费者(Canal Client)从内存中消费数据,Get增加
  • Ack: 消费者消费完成,Ack增加。并且会删除Put中已经被Ack的数据

这三个操作与Instance组件的关系如下:

深入解析中间件之-Canal_第4张图片

客户端通过canal server获取mysql binlog有几种方式(get方法和getWithoutAck):

  • 如果timeout为null,则采用tryGet方式,即时获取
  • 如果timeout不为null
    1. timeout为0,则采用get阻塞方式,获取数据,不设置超时,直到有足够的batchSize数据才返回
    2. timeout不为0,则采用get+timeout方式,获取数据,超时还没有batchSize足够的数据,有多少返回多少
private Events getEvents(CanalEventStore eventStore, Position start, int batchSize, Long timeout,
                                TimeUnit unit) {
    if (timeout == null) {
        return eventStore.tryGet(start, batchSize); // 即时获取
    } else if (timeout <= 0){
        return eventStore.get(start, batchSize); // 阻塞获取
    } else {
        return eventStore.get(start, batchSize, timeout, unit); // 异步获取
    }
}

注意:EventStore的实现采用了类似Disruptor的RingBuffer环形缓冲区。RingBuffer的实现类是MemoryEventStoreWithBuffer

get方法和getWithoutAck方法的区别是:

  • get方法会立即调用ack
  • getWithoutAck方法不会调用ack

EventStore

以10条数据为例,初始时current=-1,第一个元素起始next=0,end=9,循环[0,9]所有元素。
List元素为(A,B,C,D,E,F,G,H,I,J)

next entries[next] next-current-1 list element
0 entries[0] 0-(-1)-1=0 A
1 entries[1] 1-(-1)-1=1 B
2 entries[2] 2-(-1)-1=2 C
3 entries[3] 3-(-1)-1=3 D
. ………. ………. .
9 entries[9] 9-(-1)-1=9 J

第一批10个元素put完成后,putSequence设置为end=9。假设第二批又Put了5个元素:(K,L,M,N,O)

current=9,起始next=9+1=10,end=9+5=14,在Put完成后,putSequence设置为end=14。

next entries[next] next-current-1 list element
10 entries[10] 10-(9)-1=0 K
11 entries[11] 11-(9)-1=1 L
12 entries[12] 12-(9)-1=2 M
13 entries[13] 13-(9)-1=3 N
14 entries[14] 14-(9)-1=3 O

这里假设环形缓冲区的最大大小为15个(源码中是16MB),那么上面两批一共产生了15个元素,刚好填满了环形缓冲区。
如果又有Put事件进来,由于环形缓冲区已经满了,没有可用的slot,则Put操作会被阻塞,直到被消费掉。

下面是Put填充环形缓冲区的代码,检查可用slot(checkFreeSlotAt方法)在几个put方法中。

public class MemoryEventStoreWithBuffer extends AbstractCanalStoreScavenge implements CanalEventStore, CanalStoreScavenge {
    private static final long INIT_SQEUENCE = -1;
    private int               bufferSize    = 16 * 1024;
    private int               bufferMemUnit = 1024;                         // memsize的单位,默认为1kb大小
    private int               indexMask;
    private Event[]           entries;

    // 记录下put/get/ack操作的三个下标
    private AtomicLong        putSequence   = new AtomicLong(INIT_SQEUENCE); // 代表当前put操作最后一次写操作发生的位置
    private AtomicLong        getSequence   = new AtomicLong(INIT_SQEUENCE); // 代表当前get操作读取的最后一条的位置
    private AtomicLong        ackSequence   = new AtomicLong(INIT_SQEUENCE); // 代表当前ack操作的最后一条的位置

    // 启动EventStore时,创建指定大小的缓冲区,Event数组的大小是16*1024
    // 也就是说算个数的话,数组可以容纳16000个事件。算内存的话,大小为16MB
    public void start() throws CanalStoreException {
        super.start();
        indexMask = bufferSize - 1;
        entries = new Event[bufferSize];
    }

    // EventParser解析后,会放入内存中(Event数组,缓冲区)
    private void doPut(List data) {
        long current = putSequence.get(); // 取得当前的位置,初始时为-1,第一个元素为-1+1=0
        long end = current + data.size(); // 最末尾的位置,假设Put了10条数据,end=-1+10=9
        // 先写数据,再更新对应的cursor,并发度高的情况,putSequence会被get请求可见,拿出了ringbuffer中的老的Entry值
        for (long next = current + 1; next <= end; next++) {
            entries[getIndex(next)] = data.get((int) (next - current - 1));
        }
        putSequence.set(end);
    } 
}

Put是生产数据,Get是消费数据,Get一定不会超过Put。比如Put了10条数据,Get最多只能获取到10条数据。但有时候为了保证Get处理的速度,Put和Get并不会相等。
可以把Put看做是生产者,Get看做是消费者。生产者速度可以很快,消费者则可以慢慢地消费。比如Put了1000条,而Get我们只需要每次处理10条数据。

仍然以前面的示例来说明Get的流程,初始时current=-1,假设Put了两批数据一共15条,maxAbleSequence=14,而Get的BatchSize假设为10。
初始时next=current=-1,end=-1。通过startPosition,会设置next=0。最后end又被赋值为9,即循环缓冲区[0,9]一共10个元素。

private Events doGet(Position start, int batchSize) throws CanalStoreException {
    LogPosition startPosition = (LogPosition) start;

    long current = getSequence.get();
    long maxAbleSequence = putSequence.get();
    long next = current;
    long end = current;
    // 如果startPosition为null,说明是第一次,默认+1处理
    if (startPosition == null || !startPosition.getPostion().isIncluded()) { // 第一次订阅之后,需要包含一下start位置,防止丢失第一条记录
        next = next + 1;
    }

    end = (next + batchSize - 1) < maxAbleSequence ? (next + batchSize - 1) : maxAbleSequence;
    // 提取数据并返回
    for (; next <= end; next++) {
        Event event = entries[getIndex(next)];
        if (ddlIsolation && isDdl(event.getEntry().getHeader().getEventType())) {
            // 如果是ddl隔离,直接返回
            if (entrys.size() == 0) {
                entrys.add(event);// 如果没有DML事件,加入当前的DDL事件
                end = next; // 更新end为当前
            } else {
                // 如果之前已经有DML事件,直接返回了,因为不包含当前next这记录,需要回退一个位置
                end = next - 1; // next-1一定大于current,不需要判断
            }
            break;
        } else {
            entrys.add(event);
        }
    }
    // 处理PositionRange,然后设置getSequence为end
    getSequence.compareAndSet(current, end)
}

ack操作的上限是Get,假设Put了15条数据,Get了10条数据,最多也只能Ack10条数据。Ack的目的是清空缓冲区中已经被Get过的数据

public void ack(Position position) throws CanalStoreException {
    cleanUntil(position);
}

public void cleanUntil(Position position) throws CanalStoreException {
    long sequence = ackSequence.get();
    long maxSequence = getSequence.get();

    boolean hasMatch = false;
    long memsize = 0;
    for (long next = sequence + 1; next <= maxSequence; next++) {
        Event event = entries[getIndex(next)];
        memsize += calculateSize(event);
        boolean match = CanalEventUtils.checkPosition(event, (LogPosition) position);
        if (match) {// 找到对应的position,更新ack seq
            hasMatch = true;

            if (batchMode.isMemSize()) {
                ackMemSize.addAndGet(memsize);
                // 尝试清空buffer中的内存,将ack之前的内存全部释放掉
                for (long index = sequence + 1; index < next; index++) {
                    entries[getIndex(index)] = null;// 设置为null
                }
            }

            ackSequence.compareAndSet(sequence, next)
        }
    }
}

rollback回滚方法的实现则比较简单,将getSequence回退到ack位置。

public void rollback() throws CanalStoreException {
    getSequence.set(ackSequence.get());
    getMemSize.set(ackMemSize.get());
}

下图展示了RingBuffer的几个操作示例:

深入解析中间件之-Canal_第5张图片

EventParser WorkFlow

EventStore负责存储解析后的Binlog事件,而解析动作负责拉取Binlog,它的流程比较复杂。需要和MetaManager进行交互。
比如要记录每次拉取的Position,这样下一次就可以从上一次的最后一个位置继续拉取。所以MetaManager应该是有状态的。

EventParser的流程如下:

  1. Connection获取上一次解析成功的位置 (如果第一次启动,则获取初始指定的位置或者是当前数据库的binlog位点)
  2. Connection建立链接,发送BINLOG_DUMP指令
  3. Mysql开始推送Binaly Log
  4. 接收到的Binaly Log的通过Binlog parser进行协议解析,补充一些特定信息
  5. 传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
  6. 存储成功后,定时记录Binaly Log位置

深入解析中间件之-Canal_第6张图片

上面提到的Connection指的是实现了ErosaConnection接口的MysqlConnection
EventParser的实现类是实现了AbstractEventParserMysqlEventParser

EventParser解析binlog后通过EventSink写入到EventStore,这条链路可以通过EventStore的put方法串联起来:

深入解析中间件之-Canal_第7张图片

其实这里还有一个EventTransactionBuffer缓冲区,即Parser解析后先放到缓冲区中,
当事务发生时或者数据超过阈值,就会执行刷新操作:即消费缓冲区的数据,放到EventStore中。
这个缓冲区有两个偏移量指针:putSequence和flushSequence。

Canal HA

单机模拟两个Canal Server,将单机模式复制出两个文件夹,并修改相关配置

canal_m/conf/canal.properties

canal.id= 2
canal.ip=
canal.port= 11112
canal.zkServers=localhost:2181
canal.instance.global.spring.xml = classpath:spring/default-instance.xml

canal_m/conf/example/instance.properties

canal.instance.mysql.slaveId = 1235

canal_s

canal.id= 3
canal.ip=
canal.port= 11113
canal.zkServers=localhost:2181
canal.instance.global.spring.xml = classpath:spring/default-instance.xml

canal_s/conf/example/instance.properties

canal.instance.mysql.slaveId = 1236

启动canal_m

2017-10-12 14:51:45.202 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-12 14:51:45.776 [main] INFO  com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11112]
2017-10-12 14:51:46.687 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......

启动canal_s

2017-10-12 14:52:18.999 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-12 14:52:19.208 [main] INFO  com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11113]
2017-10-12 14:52:19.364 [main] INFO  com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......

master提供服务,canal_m/logs/example/example.log下有日志,而canal_s/logs没有example文件夹

[qihuang.zheng@dp0652 ~]$ tail -f canal_m/logs/example/example.log
2017-10-12 14:51:46.453 [main] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-12 14:51:46.463 [main] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-12 14:51:46.624 [main] INFO  c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-12 14:51:46.644 [main] INFO  c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-12 14:51:46.658 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN  c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just show master status

查看Canal HA记录在ZK的信息

[zk: 192.168.6.52:2181(CONNECTED) 7] ls /otter/canal/destinations/example/cluster
[192.168.6.52:11112, 192.168.6.52:11113]

[zk: 192.168.6.52:2181(CONNECTED) 10] get /otter/canal/destinations/example/running
{"active":true,"address":"192.168.6.52:11112","cid":2}

启动example的ClusterCanalClientTest

CanalConnector connector = CanalConnectors.newClusterConnector("192.168.6.52:2181", destination, "canal", "canal");

执行SQL:update test set name = 'zqh' where uid=1;,控制台打印日志如下:

****************************************************
* Batch Id: [1] ,count : [3] , memsize : [203] , Time : 2017-10-12 15:05:20
* Start : [mysql-bin.000004:1151:1507791918000(2017-10-12 15:05:18)] 
* End : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)] 
****************************************************

================> binlog[mysql-bin.000004:1151] , executeTime : 1507791918000 , delay : 2080ms
 BEGIN ----> Thread id: 763
----------------> binlog[mysql-bin.000004:1277] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507791918000 , delay : 2092ms
uid : 1    type=int(4)
name : zqh    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:1331] , executeTime : 1507791918000 , delay : 2130ms

再次查看ZK中记录的客户端信息:

  • 一个Instance对应一个Client,这里的Instance名称为example,对应的客户端编号是1001
  • 为了验证Instance确实是由指定的Client连接,在Server上查看11112端口
[zk: 192.168.6.52:2181(CONNECTED) 18] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:53942","clientId":1001}

[zk: 192.168.6.52:2181(CONNECTED) 19] get /otter/canal/destinations/example/1001/cursor
{"@type":"com.alibaba.otter.canal.protocol.position.LogPosition",
"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},
"postion":{"included":false,"journalName":"mysql-bin.000004","position":1331,"serverId":1,"timestamp":1507791918000}} ==》serverId表示MySQL的server_id

[qihuang.zheng@dp0652 ~]$ netstat -anpt|grep 11112
tcp        0      0 0.0.0.0:11112               0.0.0.0:*                   LISTEN      27816/java   ==》Canal服务端
tcp        0     19 192.168.6.52:11112          10.57.241.44:53942          ESTABLISHED 27816/java   ==》Canal客户端

停止canal_m

[qihuang.zheng@dp0652 canal_m]$ bin/stop.sh
dp0652: stopping canal 27816 ...
Oook! cost:1

Instance会在slave节点即canal_s上启动

[qihuang.zheng@dp0652 ~]$ tail -f canal_s/logs/example/example.log
2017-10-12 15:17:21.452 [New I/O server worker #1-1] ERROR com.alibaba.otter.canal.server.netty.NettyUtils - ErrotCode:400 , Caused by :
something goes wrong with channel:[id: 0x0c182149, /10.57.241.44:54008 => /192.168.6.52:11113], exception=com.alibaba.otter.canal.server.exception.CanalServerException: destination:example should start first

2017-10-12 15:17:21.661 [pool-1-thread-1] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-12 15:17:21.663 [pool-1-thread-1] INFO  c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-12 15:17:21.767 [pool-1-thread-1] WARN  org.springframework.beans.TypeConverterDelegate - PropertyEditor [com.sun.beans.editors.EnumEditor] found through deprecated global PropertyEditorManager fallback - consider using a more isolated form of registration, e.g. on the BeanWrapper/BeanFactory!
2017-10-12 15:17:21.968 [pool-1-thread-1] INFO  c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-12 15:17:21.998 [pool-1-thread-1] INFO  c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-12 15:17:22.071 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN  c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just last position
 {"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},"postion":{"included":false,"journalName":"mysql-bin.000004","position":1331,"serverId":1,"timestamp":1507791918000}}

停止canal_m后,只剩下canal_s,所以Canal集群只有一个节点了:

[zk: 192.168.6.52:2181(CONNECTED) 14] ls /otter/canal/cluster
[192.168.6.52:11113]

[zk: 192.168.6.52:2181(CONNECTED) 5] get /otter/canal/destinations/example/running
{"active":true,"address":"192.168.6.52:11113","cid":3}

切换过程中,Client的日志

2017-10-12 15:17:22.524 [Thread-2] WARN  c.alibaba.otter.canal.client.impl.ClusterCanalConnector - failed to connect to:/192.168.6.52:11113 after retry 0 times
2017-10-12 15:17:22.529 [Thread-2] WARN  c.a.otter.canal.client.impl.running.ClientRunningMonitor - canal is not run any in node
2017-10-12 15:17:27.695 [Thread-2] INFO  c.alibaba.otter.canal.client.impl.ClusterCanalConnector - restart the connector for next round retry.

****************************************************
* Batch Id: [1] ,count : [1] , memsize : [75] , Time : 2017-10-12 15:17:27
* Start : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)] 
* End : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)] 
****************************************************
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:1331] , executeTime : 1507791918000 , delay : 729763ms

再次执行SQL语句

****************************************************
* Batch Id: [2] ,count : [3] , memsize : [198] , Time : 2017-10-12 15:20:56
* Start : [mysql-bin.000004:1406:1507792855000(2017-10-12 15:20:55)] 
* End : [mysql-bin.000004:1581:1507792855000(2017-10-12 15:20:55)] 
****************************************************

================> binlog[mysql-bin.000004:1406] , executeTime : 1507792855000 , delay : 1539ms
 BEGIN ----> Thread id: 763
----------------> binlog[mysql-bin.000004:1532] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507792855000 , delay : 1539ms
uid : 1    type=int(4)
name : zqhx    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:1581] , executeTime : 1507792855000 , delay : 1540ms

停止客户端后,查询ZK中的客户端信息。注意,仍然有cursor信息,但是没有running,因为instance没有对应的client了。

[zk: 192.168.6.52:2181(CONNECTED) 1] ls /otter/canal/destinations/example
[running, cluster, 1001]

[zk: 192.168.6.52:2181(CONNECTED) 0] ls /otter/canal/destinations/example/1001
[cursor]

[zk: 192.168.6.52:2181(CONNECTED) 6] get /otter/canal/destinations/example/1001/cursor
{"@type":"com.alibaba.otter.canal.protocol.position.LogPosition",
"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},
"postion":{"included":false,"journalName":"mysql-bin.000004","position":1581,"serverId":1,"timestamp":1507792855000}}

cursor信息是instance消费binlog的位置,即使客户端停掉了,也仍然保留在zk中。

注意:1001是ClientIdentity的固定编号,相关源码在SimpleCanalConnector的构造方法里。

下面总结下zk中的相关记录:

/otter/canal/
  |- cluster          ==> [192.168.6.52:11112, 192.168.6.52:11113]
  |- destinations     ==> instances
     |- example1/     ==> instance name
     |  |- cluster    ==> [192.168.6.52:11112, 192.168.6.52:11113]
     |  |- running    ==> {"active":true,"address":"192.168.6.52:11112","cid":2}
     |  |- 1001
     |     |-running  ==> {"active":true,"address":"10.57.241.44:53942","clientId":1001}
     |     |- cursor  ==> {localhost:3306,"journalName":"mysql-bin.000004","position":1331,"serverId":1}
     |- example2/
     |  |- cluster    ==> [192.168.6.52:11112, 192.168.6.52:11113]
     |  |- running    ==> {"active":true,"address":"192.168.6.52:11112","cid":2}
     |  |- 1001
     |     |-running  ==> {"active":true,"address":"10.57.241.44:53942","clientId":1001}
     |     |- cursor  ==> {localhost:3306,"journalName":"mysql-bin.000004","position":1331,"serverId":1}

下图是Canal Server HA的流程图:

  1. canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断 (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)
  2. 创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态
  3. 一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.
  4. canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.

深入解析中间件之-Canal_第8张图片

Canal Client HA

Canal Client的方式和canal server方式类似,也是利用zookeeper的抢占EPHEMERAL节点的方式进行控制。

关于Canal Client HA的验证,可以参考:blog.csdn.net/xiaolinzi00…

  • 在IDEA中同时启动多个客户端,执行一条SQL语句,其中一个客户端会打印日志,另一个不会打印。
  • 停止该客户端。
  • 再次执行SQL语句,另外一个客户端会打印日志

Client1的日志:

****************************************************
* Batch Id: [3] ,count : [3] , memsize : [198] , Time : 2017-10-12 17:59:59
* Start : [mysql-bin.000004:1656:1507802398000(2017-10-12 17:59:58)] 
* End : [mysql-bin.000004:1831:1507802398000(2017-10-12 17:59:58)] 
****************************************************

================> binlog[mysql-bin.000004:1656] , executeTime : 1507802398000 , delay : 1188ms
 BEGIN ----> Thread id: 768
----------------> binlog[mysql-bin.000004:1782] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507802398000 , delay : 1199ms
uid : 1    type=int(4)
name : zqh    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:1831] , executeTime : 1507802398000 , delay : 1236ms
## stop the canal client## canal client is down.

停止Client1后,Client2的日志:

****************************************************
* Batch Id: [4] ,count : [3] , memsize : [198] , Time : 2017-10-12 18:02:15
* Start : [mysql-bin.000004:1906:1507802534000(2017-10-12 18:02:14)] 
* End : [mysql-bin.000004:2081:1507802534000(2017-10-12 18:02:14)] 
****************************************************

================> binlog[mysql-bin.000004:1906] , executeTime : 1507802534000 , delay : 1807ms
 BEGIN ----> Thread id: 768
----------------> binlog[mysql-bin.000004:2032] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507802534000 , delay : 1819ms
uid : 1    type=int(4)
name : zqhx    type=varchar(10)    update=true
----------------
 END ----> transaction id: 0
================> binlog[mysql-bin.000004:2081] , executeTime : 1507802534000 , delay : 1855ms

观察ZK节点中instance对应的client节点,在Client切换时,会进行变更。
比如下面的客户端从56806端口切换到了56842端口。
把所有客户端都关闭后,1001下没有running。表示instance没有客户端消费binlog了。

[zk: 192.168.6.52:2181(CONNECTED) 29] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:56806","clientId":1001}

[zk: 192.168.6.52:2181(CONNECTED) 30] get /otter/canal/destinations/example/1001/running
Node does not exist: /otter/canal/destinations/example/1001/running

[zk: 192.168.6.52:2181(CONNECTED) 31] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:56842","clientId":1001}

[zk: 192.168.6.52:2181(CONNECTED) 32] ls /otter/canal/destinations/example/1001
[cursor]

具体实现相关类有:ClientRunningMonitor/ClientRunningListener/ClientRunningData。

client running相关控制,主要为解决client自身的failover机制。
canal client允许同时启动多个canal client,通过running机制,可保证只有一个client在工作,其他client做为冷备.
当运行中的client挂了,running会控制让冷备中的client转为工作模式,
这样就可以确保canal client也不会是单点. 保证整个系统的高可用性.

下图左边是客户端的HA实现,右边是服务端的HA实现

深入解析中间件之-Canal_第9张图片

Develop Canal Client

先理解:github.com/alibaba/can…

深入解析中间件之-Canal_第10张图片

subscribe change

重新看下CanalServerWithEmbedded的订阅方法。我们知道客户端在连接服务端的某个destination之后,会紧接着调用subscribe()方法。

客户端连接服务端时,必须指定destination名称,因为一个服务端可能有多个destination。比如服务端启动了两个Instance,它们的destination名称分别是example1和example2。
假设有两个客户端A和B,A连接example1,B连接example2。 服务端的canalInstances字典为:{example1=>Instance1,example2->Instance2}。
那么ClientA的destination等于example1,对应的服务端实例为Instance1。ClientB的destination等于example2,对应的服务端实例为Instance3。

深入解析中间件之-Canal_第11张图片

/**
 * 客户端订阅,重复订阅时会更新对应的filter信息
 */
public void subscribe(ClientIdentity clientIdentity) throws CanalServerException {
    CanalInstance canalInstance = canalInstances.get(clientIdentity.getDestination());
    if (!canalInstance.getMetaManager().isStart()) {
        canalInstance.getMetaManager().start();
    }

    canalInstance.getMetaManager().subscribe(clientIdentity); // 执行一下meta订阅

    // 根据Client从MetaManager中获取最近一次的Cursor
    Position position = canalInstance.getMetaManager().getCursor(clientIdentity);
    if (position == null) { // 如果没有
        position = canalInstance.getEventStore().getFirstPosition();// 获取一下store中的第一条
        if (position != null) {
            canalInstance.getMetaManager().updateCursor(clientIdentity, position); // 更新一下cursor
        }
        logger.info("subscribe successfully, {} with first position:{} ", clientIdentity, position);
    } else { // 有就直接使用
        logger.info("subscribe successfully, use last cursor position:{} ", clientIdentity, position);
    }

    // 通知下订阅关系变化
    canalInstance.subscribeChange(clientIdentity);
}

这里面关于订阅方法有两个地方,CanalInstance本身调用了subscribeChange,它关联的MetaManager也调用了subscribe方法。

一个CanalServer可以有多个CanalInstance,每个Instance都会有一个MetaManager。而一个Instance对应一个Client。
那么,这么说来,一个MetaManager也就只会有一个Client了。但是从下面的数据结构来看的话,一个MetaManager貌似可以有多个Destination。

public class MemoryMetaManager extends AbstractCanalLifeCycle implements CanalMetaManager {
    protected Map>              destinations;
    protected Map batches;
    protected Map                  cursors;

    public synchronized void subscribe(ClientIdentity clientIdentity) throws CanalMetaManagerException {
        List clientIdentitys = destinations.get(clientIdentity.getDestination());
        if (clientIdentitys.contains(clientIdentity)) {
            clientIdentitys.remove(clientIdentity);
        }
        clientIdentitys.add(clientIdentity);
    }
}
猜测:多个Client可以连接到同一个Instance(虽然只会有一个Instance起作用),所以一个MetaManager可以管理多个Client。
NO!Client的HA与MetaManager记录的Client是不一样的。HA表示同一时间只有一个Client起作用,那么MetaManager不可能同时记录两个Client。

官方ClientAPI文档上:ClientIdentity是canal client和server交互之间的身份标识,目前clientId写死为1001.
(目前canal server上的一个instance只能有一个client消费,clientId的设计是为1个instance多client消费模式而预留的,暂时不需要理会)

也就是说:一个Instance还是有可能有多个Client连接上来的。

深入解析中间件之-Canal_第12张图片

这里的数据结构为什么这么设计,还需要参考AbstractMetaManagerTest的doSubscribeTest方法来理解。

对于相同的destination,可以订阅不同的client。下面的示例分别订阅了[client1,client2]和[client1,client3]。

public void doSubscribeTest(CanalMetaManager metaManager) {
    ClientIdentity client1 = new ClientIdentity(destination, (short) 1);
    metaManager.subscribe(client1);
    metaManager.subscribe(client1); // 重复调用:删除旧的client1,并继续增加新的client1
    ClientIdentity client2 = new ClientIdentity(destination, (short) 2);
    metaManager.subscribe(client2);

    List clients = metaManager.listAllSubscribeInfo(destination);
    Assert.assertEquals(Arrays.asList(client1, client2), clients);

    metaManager.unsubscribe(client2);
    ClientIdentity client3 = new ClientIdentity(destination, (short) 3);
    metaManager.subscribe(client3);

    clients = metaManager.listAllSubscribeInfo(destination);
    Assert.assertEquals(Arrays.asList(client1, client3), clients);
}

CanalServerWithEmbedded的订阅方法最后还会调用AbstractCanalInstance的subscribeChange方法。
这里会设置表名的filter,以及黑名单。配置项在instance.properties中。

# table regex
canal.instance.filter.regex = .*\\..*
# table black regex
canal.instance.filter.black.regex =

filter表示客户端要通过Canal Server获取MySQL哪些表的binlog,上面配置项表示获取所有表。

public class AbstractCanalInstance extends AbstractCanalLifeCycle implements CanalInstance {
    protected Long                                   canalId;                                                      // 和manager交互唯一标示
    protected String                                 destination;                                                  // 队列名字
    protected CanalEventStore                 eventStore;                                                   // 有序队列

    protected CanalEventParser                       eventParser;                                                  // 解析对应的数据信息
    protected CanalEventSink> eventSink;                                                    // 链接parse和store的桥接器
    protected CanalMetaManager                       metaManager;                                                  // 消费信息管理器
    protected CanalAlarmHandler                      alarmHandler;                                                 // alarm报警机制

    @Override
    public boolean subscribeChange(ClientIdentity identity) {
        if (StringUtils.isNotEmpty(identity.getFilter())) {
            logger.info("subscribe filter change to " + identity.getFilter());
            AviaterRegexFilter aviaterFilter = new AviaterRegexFilter(identity.getFilter());

            boolean isGroup = (eventParser instanceof GroupEventParser);
            if (isGroup) {
                // 处理group的模式
                List eventParsers = ((GroupEventParser) eventParser).getEventParsers();
                for (CanalEventParser singleEventParser : eventParsers) {// 需要遍历启动
                    ((AbstractEventParser) singleEventParser).setEventFilter(aviaterFilter);
                }
            } else {
                ((AbstractEventParser) eventParser).setEventFilter(aviaterFilter);
            }
        }

        // filter的处理规则
        // a. parser处理数据过滤处理
        // b. sink处理数据的路由&分发,一份parse数据经过sink后可以分发为多份,每份的数据可以根据自己的过滤规则不同而有不同的数据
        // 后续内存版的一对多分发,可以考虑
        return true;
    }
}

对应在EventParser中,存在两个Filter的引用。比如上面eventParser.setEventFilter()方法会设置AbstractEventParser的eventFilter。

public abstract class AbstractEventParser extends AbstractCanalLifeCycle implements CanalEventParser {
    protected CanalLogPositionManager                logPositionManager         = null;
    protected CanalEventSink> eventSink                  = null;
    protected CanalEventFilter                       eventFilter                = null;
    protected CanalEventFilter                       eventBlackFilter           = null;
}

EventParser Implement

AbstractEventParser的start()方法是解析binlog的主要方法。在启动transactionBuffer和BinLogParser后,会启动一个后台的工作线程parseThread一直运行:

注意:下面的几个步骤是嵌套在一个while死循环里,最后会进行sleep。

// 开始执行replication
// 1. 构造Erosa连接
erosaConnection = buildErosaConnection();

// 2. 启动一个心跳线程
startHeartBeat(erosaConnection);

// 3. 执行dump前的准备工作
preDump(erosaConnection);

// 4. 连接MySQL数据库
erosaConnection.connect(); 

// 5. 获取最后的位置信息
EntryPosition startPosition = findStartPosition(erosaConnection);
logger.info("find start position : {}", startPosition.toString());
// 重新链接,因为在找position过程中可能有状态,需要断开后重建
erosaConnection.reconnect();

// 定义回调函数,当解析成功后,sink()方法会暂存到缓冲区transactionBuffer中。缓冲区的数据会通过心跳线程放入EventSink
final SinkFunction sinkHandler = new SinkFunction() {
    private LogPosition lastPosition;

    public void sink(EVENT event) {
        CanalEntry.Entry entry = parseAndProfilingIfNecessary(event);
        if (entry != null) {
            transactionBuffer.add(entry);
            this.lastPosition = buildLastPosition(entry);  // 记录一下对应的positions
        }
    }
};

// 6. 开始dump数据
if (StringUtils.isEmpty(startPosition.getJournalName()) && startPosition.getTimestamp() != null) {
    erosaConnection.dump(startPosition.getTimestamp(), sinkHandler);
} else {
    erosaConnection.dump(startPosition.getJournalName(), startPosition.getPosition(), sinkHandler);
}

这里的erosaConnection指的是Canal Server到MySQL的连接。
而前面我们说的客户端(CanalClient)连接CanalConnector指的是CanalClient到CanalServer的连接。

CanalServer到MySQL的连接是要获取binlog的dump数据包。而CanalClient到CanalServer有多种请求(GET/ACK等)。

我们不会具体分析dump的流程,不过看下erosaConnection的MySQL实现MysqlConnection是如何在获取到事件后调用回调函数。

public void dump(String binlogfilename, Long binlogPosition, SinkFunction func) throws IOException {
    updateSettings();
    sendBinlogDump(binlogfilename, binlogPosition);
    // connector指的是CanalServer到MySQL Master服务器的连接,创建一个拉取线程拉取MySQL的binlog
    DirectLogFetcher fetcher = new DirectLogFetcher(connector.getReceiveBufferSize());
    fetcher.start(connector.getChannel());
    LogDecoder decoder = new LogDecoder(LogEvent.UNKNOWN_EVENT, LogEvent.ENUM_END_EVENT);
    LogContext context = new LogContext();
    while (fetcher.fetch()) { // 由于设置了缓冲区的大小,每次dump都只会拉取一批数据
        LogEvent event = null;
        event = decoder.decode(fetcher, context);
        if (!func.sink(event)) break; // 调用回调方法
    }
}

服务端有一个心跳线程,它的目的是消费transactionBuffer,并写入到EventSink中。

protected boolean consumeTheEventAndProfilingIfNecessary(List entrys) {
    boolean result = eventSink.sink(entrys, 
        (runningInfo == null) ? null : runningInfo.getAddress(), destination);
    return result;
}

EventSink最终会将数据写入到EventStore中,即Put到RingBuffer中。

eunomia

[zk: 192.168.6.55:2181(CONNECTED) 3] ls /otter/canal/destinations
[octopus_demeter, example_bak, namelist_test, xiaopang2, namelist2, xiaopang3, namelist1, example, xiaopang]

[zk: 192.168.6.55:2181(CONNECTED) 4] ls /otter/canal/destinations/xiaopang
[eunomia, cluster, 1001, running]

[zk: 192.168.6.55:2181(CONNECTED) 5] ls /otter/canal/destinations/xiaopang/eunomia
[_c_2a900d4e-75fb-4445-b30c-04e1bdb2e5d9-lock-0001381746, runnning, _c_ea33db37-9193-4c75-9e61-85e59e123109-lock-0001381738]

// Eunomia Server?还是Canal Client?
[zk: 192.168.6.55:2181(CONNECTED) 7] get /otter/canal/destinations/xiaopang/eunomia/runnning
10.57.17.100

[zk: 192.168.6.55:2181(CONNECTED) 18] get /otter/canal/destinations/xiaopang/1001/running
{"active":true,"address":"10.57.17.100:60661","clientId":1001}

你可能感兴趣的:(ETL,canal)