关于二叉堆(优先队列)的其他操作及其应用

【0】README

0.1)本文总结于 数据结构与算法分析;源代码均为原创, 旨在了解到我们学习了优先队列后,还能干些什么东西出来, 增加学习的interest;
0.2)以下列出了 关于二叉堆(优先队列)的其他有用的操作, 其内容基本可以囊括大部分的优先队列知识点, 亮点是这里还引入到了 堆排序
0.3)二叉堆的insert 和 deleteMin 基本操作和概念,参见 http://blog.csdn.net/pacosonswjtu/article/details/49498023


【1】二叉堆的操作应用

1.1)降低关键字的值——decreaseKey

  • 1)decreaseKey概述: decreaseKey(P, △, H) 操作降低在位置 P处的关键字的值, 降值的幅度为正的量△; 由于这可能破坏堆的序, 因此必须通过 上滤 对堆进行调整;
  • 2)decreaseKey应用: 该操作对 系统管理程序是有用的, 系统管理程序能够使它们的程序以最高的优先级来运行;

1.2)增加关键字的值——increaseKey

  • 1)increaseKey概述: increaseKey(P, △, H) 操作增加在位置 P处的关键字的值,增值的幅度为正的量△; 由于这可能破坏堆的序, 因此必须通过 下滤 对堆进行调整;
  • 2)increaseKey应用: 许多os 调度程序自动地降低正在过多地消耗 CPU 时间的进程的优先级;

1.3)删除某个位置上的元素——deleteElement

  • 1)deleteElement概述: delete(P, H)操作删除堆中位置P 上的节点,这通过首先执行 decreaseKey(P, ∞, H), 然后再执行 deleteMin 来完成;
  • 2)deleteElement 应用:当一个进程被用户终止(而不是正常终止时), 它必须从优先队列中除去;

1.4)构建堆——buildHeap

  • 1)buildHeap 概述: buildHeap(H) 操作把N个关键字作为输入并把他们放入空堆中;显然, 这可以使用 N个相继的insert操作来完成;
  • 2)buildHeap 应用:

1.5)优先队列的应用(我这里只列出 了选择问题, 当然远远不止这一个应用, 这个应用我还没有编写源代码实现)

  • 1)我们将要考察的第一个问题是选择问题: 当时的输入是 N 个元素以及一个整数 k, 这N 个元素的集可以是全序的,该选择问题是要找出 第k个最大的元素;
  • 2)利用优先队列来解决(二叉堆属于优先队列): 对上述N个元素建立 大根堆, 然后删除k-1个最大元素, 那么二叉堆的根节点的元素就是第k个最大元素;
  • 3)堆排序: 注意, 如果我们对 k=N 运行该程序并在 元素离开对时记录他们的值, 那么实际上已经对输入文件以时间 O(NlogN) 做了排序,这样就得到一种快速的排序算法——堆排序;

Attention)

  • A1) 改动的节点的儿子情况只有3种: 要么一个儿子都没有, 要么只有一个左儿子,要么有两个儿子 (不可能只有一个右儿子);
  • A2) 就编程而言,上滤的难度 小于 下滤的难度;
    其他堆操作的源代码(核心是 堆的上滤 percolateUp 和下滤percolateDown操作):

【2】source code+printing

2.0)Warning of percolateDown :

  • W1)因为涉及到利用下滤操作把随机数组(下标从0开始)建立堆(buildHeap 操作) , 然而在堆的其他操作,如插入,删除操作中,使用的下标是从1开始以便于编程;所以我们的下滤操作分为下标从0开始的percolateDownFromZero 和 下标从1开始的percolateDownFromOne,不过上述percolateDown 的两个版本的 编程idea 都是一样的,只是数组的起始下标不一样而已,这是我们应该注意的;
  • W2) 代码中, 只有buildHeap 使用的下滤 percolateDownFromZero 版本,而其他操作使用的是 percolateDownFromOne;
  • W3)你要知道实现 堆操作的代码核心是: 上滤percolateUpFromOne 和下滤操作 percolateDownFromOne + percolateDownFromZero;

2.1)download source code :
https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter6
2.2)source code at a glance:
[1st file binaryheap.h]

#include 
#include 

#define ElementType int
#define Error(str) printf("\n error: %s \n",str)   

struct BinaryHeap;
typedef struct BinaryHeap *BinaryHeap;

void swap(ElementType *x, ElementType *y);
BinaryHeap initBinaryHeap(int capacity);
void insert(ElementType value, BinaryHeap bh);
ElementType deleteMin(BinaryHeap);
int isFull(BinaryHeap bh);
int isEmpty(BinaryHeap bh);
void percolateUp(int index, BinaryHeap bh);
void percolateDownFromOne(int index, BinaryHeap bh);
void printBinaryHeap(BinaryHeap bh);
void printBinaryHeapFromZero(BinaryHeap bh);

struct BinaryHeap 
{
    int capacity;
    int size;   
    ElementType *elements;      
};

[2st file binaryHeapBasicOperation.c]

#include "binaryheap.h"

//judge whether the BinaryHeap is full or not , also 1 or 0 
int isFull(BinaryHeap bh)
{
    return bh->size == bh->capacity - 1 ? 1 : 0 ;
}

//judge whether the BinaryHeap is empty or not , also 1 or 0 
int isEmpty(BinaryHeap bh)
{
    return bh->size == 0 ? 1 : 0 ;
}

void swap(ElementType *x, ElementType *y)
{
    ElementType temp;

    temp = *x;
    *x = *y;
    *y = temp;
}

// get the left child of node under index with startup 1
int leftChildFromOne(int index)
{
    return index * 2;
}

ElementType deleteMin(BinaryHeap bh)
{   
    ElementType minimum;
    ElementType *data;  

    if(isEmpty(bh))
    {
        Error("failed deleting minimum , for the BinaryHeap is empty, from func deleteMin !");
        return -1;  
    }

    data = bh->elements;    
    minimum = data[1];

    swap(&data[1], &data[bh->size]);
    bh->size-- ; // size-- occurs prior to percolateDownFromOne 
    percolateDownFromOne(1, bh) ;   

    return minimum;
} 

// Attention, the index of the heap starts from 1
void insert(ElementType value, BinaryHeap bh)
{
    int i;

    if(isFull(bh))
    {
        Error("failed insertion , for the BinaryHeap is full, from func insert!");
        return ;    
    }

    for(i = ++bh->size; bh->elements[i/2] > value; i /= 2)
        bh->elements[i] = bh->elements[i / 2];

    bh->elements[i] = value;
}

BinaryHeap initBinaryHeap(int capacity)
{
    BinaryHeap bh;
    ElementType *temp;

    bh = (BinaryHeap)malloc(sizeof(struct BinaryHeap));
    if(!bh) {
        Error("out of space, from func initBinaryHeap");        
        return NULL;
    }  
    bh->capacity = capacity;
    bh->size = 0;

    temp = (ElementType *)malloc(capacity * sizeof(ElementType));
    if(!temp) {
        Error("out of space, from func initBinaryHeap");        
        return NULL;
    } 
    bh->elements = temp;

    return bh;
}

void printBinaryHeap(BinaryHeap bh)
{
    int i;
    ElementType *temp;

    if(!bh)
        Error("printing execution failure, for binary heap is null, from func printBinaryHeap");    

    temp = bh->elements;
    for(i = 1; i < bh->capacity; i++)
    {
        printf("\n\t index[%d] = ", i);
        if(i <= bh->size)
            printf("%d", bh->elements[i]);
        else
            printf("NULL");
    }
    printf("\n");
}  

//print the binary heap who starts from index 0
void printBinaryHeapFromZero(BinaryHeap bh)
{
    int i;
    ElementType *temp;

    if(!bh)
        Error("printing execution failure, for binary heap is null, from func printBinaryHeap");    

    temp = bh->elements;
    for(i = 0; i < bh->capacity; i++)
    {
        printf("\n\t index[%d] = ", i);
        if(i < bh->size)
            printf("%d", bh->elements[i]);
        else
            printf("NULL");
    }
    printf("\n");
}  

[3rd file binaryHeapOtherOperation.c]

 #include "binaryheap.h"

#define Infinity 10000
 // switch the elements 

void swap(ElementType *x, ElementType *y)
{
    ElementType temp;

    temp = *x;
    *x = *y;
    *y = temp;
}

// get the parent of the element with index 
int parentFromOne(int index)
{
    return index / 2;
}

// percolating up the element when its value is greater than children (minimal heap)
 //Attention: all of bh->elements starts from index 1
 void percolateUpFromOne(int index, BinaryHeap bh)
 {  
    ElementType *data;
    ElementType temp;
    int size;   
    int parent;

    data = bh->elements;
    size = bh->size;

    for(temp = data[index]; parentFromOne(index) > 0; index = parent)
    {
        parent = parentFromOne(index);
        if(parent == 0 || temp > data[parent])              
            break;
        else        
            data[index] = data[parent];                                         
    }
    data[index] = temp;
 }

 // get the left child of node under index with startup one
int leftChildFromOne(int index)
{
    return index * 2;
}

// percolating down the element when its value is greater than children (minimal heap)
 //Attention: all of bh->elements starts from index 1
 void percolateDownFromOne(int index, BinaryHeap bh)
 {  
    ElementType *data;
    int size;
    ElementType temp;
    int child;

    data = bh->elements;
    size = bh->size;

    for(temp = data[index]; leftChildFromOne(index) <= size; index = child)
    {
        child = leftChildFromOne(index);
        if(child < size && data[child] > data[child+1])
            child++;
        if(temp > data[child])
            data[index] = data[child];
        else
            break;
    }
    data[index] = temp;
 }

//decreasing value of the element under index by increment
void decreaseKey(int index, ElementType decrement, BinaryHeap bh)
{   
    if(index > bh->size || index < 1)
    {
        Error(" failed decreaseKey, since overstep the boundary! ");
        return ;
    }

    bh->elements[index] -= decrement; // update the element under given index
    percolateUpFromOne(index, bh);
}

//increasing value of the element under index by increment
void increaseKey(int index, ElementType increment, BinaryHeap bh)
{   
    if(index > bh->size || index < 1)
    {
        Error(" failed increaseKey, since overstep the boundary! ");
        return ;
    }

    bh->elements[index] += increment; // update the element under given index
    percolateDownFromOne(index, bh);
}

//deleting the element under index 
void deleteElement(int index, BinaryHeap bh)
{
    decreaseKey(index, Infinity, bh); // 1st step, decreaseKey operation placing the element under index upto the root  
    deleteMin(bh); //2nd step, deleteMin deleting the element under the root;
} 

// get the left child of node under index with startup zero
int leftChildFromZero(int index)
{
    return index * 2 + 1;
}

// percolating down the element when its value is greater than children (minimal heap)
 //Attention: all of bh->elements starts from index 0
 void percolateDownFromZero(int index, BinaryHeap bh)
 {  
    ElementType *data;
    ElementType temp;
    int size;   
    int child;

    data = bh->elements;
    size = bh->size;

    for(temp = data[index]; leftChildFromZero(index) < size; index = child)
    {
        child = leftChildFromZero(index);
        if(child < size - 1 && data[child] > data[child+1])
            child++;
        if(temp > data[child])
            data[index] = data[child];
        else
            break;
    }
    data[index] = temp;
}

// building the heap with data in array randomly
void buildHeap(BinaryHeap bh)
{
    int i;  
    ElementType *data;

    data = bh->elements;

    for(i = bh->size/2; i >= 0; i--)
        percolateDownFromZero(i, bh);       
}

 int main()
{
    ElementType data[] = {85, 80, 40, 30, 10, 70, 110}; // P141 
    ElementType buildHeapData[] = {150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130};
    BinaryHeap bh;  
    int size;
    int i;  
    int capacity;

    printf("\n\t=== test for inserting the binary heap with {85, 80, 40, 30, 10, 70, 110} in turn ===\n");
    capacity = 14;
    bh = initBinaryHeap(capacity);
    size = 7;   


    for(i = 0; i < size; i++)
        insert(data[i], bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for inserting the binary heap with {100, 20, 90} in turn ===\n");
    insert(100, bh);
    insert(20, bh);
    insert(90, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for inserting the binary heap with 5 ===\n");
    insert(5, bh);      
    printBinaryHeap(bh);

    printf("\n\t=== test for 3 deletings towards the minimum in binary heap ===\n");
    deleteMin(bh);  
    printBinaryHeap(bh);
    deleteMin(bh);      
    printBinaryHeap(bh);
    deleteMin(bh);  
    printBinaryHeap(bh);

    // other operations in bianry heap  
    printf("\n\t====== test for other operations in bianry heap as follows ======\n");
    printf("\n\t=== test for increaseKey(4, 120, bh) ===\n");
    increaseKey(4, 120, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for increaseKey(2, 120, bh) ===\n");
    increaseKey(2, 120, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for decreaseKey(9, 195, bh) ===\n");
    decreaseKey(9, 195, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for decreaseKey(4, 90, bh) ===\n");
    decreaseKey(4, 90, bh);
    printBinaryHeap(bh);


    printf("\n\t=== test for decreaseKey(7, 50, bh) ===\n");
    decreaseKey(7, 50, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for decreaseKey(5, 155, bh) ===\n");
    decreaseKey(5, 155, bh);
    printBinaryHeap(bh);



    printf("\n\t=== test for deleteElement(4, bh) ===\n");
    deleteElement(4, bh);
    printBinaryHeap(bh);

    printf("\n\t=== test for deleteElement(1, bh) ===\n");
    deleteElement(1, bh);
    printBinaryHeap(bh);


    printf("\n\t=== test for deleteElement(3, bh) ===\n");
    deleteElement(3, bh);
    printBinaryHeap(bh); // test over , Bingo!

    // as you know, the build heap operation is identical with other operations
    printf("\n\t=== test for building heap with {150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130} ===\n");
    capacity = 16;
    bh = initBinaryHeap(capacity);
    bh->size = 15;
    bh->elements = buildHeapData; 
    buildHeap(bh);
    printBinaryHeapFromZero(bh);

    return 0;
}

2.3)printing results:
关于二叉堆(优先队列)的其他操作及其应用_第1张图片
关于二叉堆(优先队列)的其他操作及其应用_第2张图片
关于二叉堆(优先队列)的其他操作及其应用_第3张图片
关于二叉堆(优先队列)的其他操作及其应用_第4张图片
关于二叉堆(优先队列)的其他操作及其应用_第5张图片

你可能感兴趣的:(关于二叉堆(优先队列)的其他操作及其应用)