- 机器学习中的过拟合、欠拟合与正则化
喜-喜
人工智能机器学习人工智能
在机器学习的世界里,过拟合与欠拟合是模型训练过程中常常会遇到的两大问题,而正则化则是应对过拟合的重要手段。理解它们对于构建高性能的机器学习模型至关重要。一、过拟合与欠拟合(一)过拟合 定义:过拟合指的是模型在训练数据上表现得非常好,几乎能完美地拟合训练数据中的每一个细节,但在测试数据或新数据上却表现很差,泛化能力极低。简单来说,就是模型过度学习了训练数据中的噪声和细节,而忽略了数据背后的真实
- ollama api 中 api/generate 和 api/chat 的区别
喜-喜
人工智能ollama人工智能
在Ollama中,api/generate和api/chat这两个API端点都与文本生成相关,但它们在功能、使用场景和交互方式等方面存在明显区别:功能特点api/generate它是一个相对基础的文本生成端点,主要用于根据给定的提示信息生成一段连续的文本。这个端点会基于输入的提示,按照模型的语言生成能力输出一段完整的内容,更侧重于单纯的文本生成任务。生成过程不依赖于上下文的历史对话信息,每次请求都
- grafana K6压测
xyc1211
测试grafanak6
文章目录installandrunscript.jsoptions最佳实践report解析https://grafana.com/docs/k6/latest/get-startedinstallandruninstall#macbrewinstallk6当前目录下生成压测脚本#createfilescript.jsk6new[filename]#createfile‘script.js’inth
- 大模型控制参数简介
Hns.
人工智能
在使用大模型时,可以通过调整不同的控制参数来优化生成效果和性能。以下是一些常见的控制参数及其用途:1.温度(Temperature)功能:控制生成文本的随机性。温度越高,生成的内容越富创意和多样;温度越低,生成的内容越确定和一致。使用场景:低温(如0.2-0.5):适用于需要准确、稳定的答案(如知识问答)。高温(如0.7-1.0):适用于创意写作或需要多样化的内容。2.最大Token长度(MaxT
- VS C++通过路径遍历文件夹图片并生成xml文件并调用
贫僧这就还俗、
c++xml
记录一下(每次用到的时候还得去找...):网上c++生成xml的方法有很多,这里简单介绍以下opencv自带的FileStorage函数使用方法,1、生成xml文件:#include#includeusingnamespacecv;usingnamespacestd;voidimg_save_xml(Stringimg_path,Stringxml_name){FileStoragefile_st
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
路人与大师
语言模型人工智能自然语言处理
一、系统架构详解1.输入层a.用户行为数据数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。特征工程:行为序列:用户行为的时间顺序,如最近浏览的商品类别。频率与时长:浏览某类商品的频率和时长。转化率:从浏览到购买的转化情况。b.商品数据数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。处理方式:标准化处
- stm32学习之路——使用串口打印日志
程序员kid1412
linux上stm32学习之路stm32学习嵌入式硬件
滴答时钟配置完了,现在调试手段还是只能通过单步断点,断点调试太麻烦也太不稳定。参考linux内核的方式将日志加到串口上,通过串口输出一下日志。串口的配置很简单,这里使用USART2,主要是因为引脚比较好接线。使用同步模式,不配置中断。为了打印日志所以不想搞太复杂,异步或中断还要考虑实现buffer来处理缓冲区问题,可以但没必要,简单最好。配置完就可以生成代码了,生成出来后,查看一下可以用哪些api
- Python常见面试题的详解13
ylfhpy
python开发语言面试
1.以下X是什么类型X=(iforiinrange(10))要点在Python中,变量的类型取决于其赋值的对象。下面代码中的(iforiinrange(10))是一个生成器表达式。生成器表达式是一种简洁的创建生成器的方式,它类似于列表推导式,但使用圆括号而非方括号。生成器是一种特殊的迭代器,它不会一次性生成所有的值,而是在需要时逐个生成,这在处理大量数据时可以节省内存。pythonX=(ifori
- MATLAB利用Filter Design设计滤波器
zxcwxkp
MATLAB数字信号处理
一、FilterDesign设计滤波器设计带通滤波器,若export选中coefficients,则输出到workspace两个数组,SOS与G。若选中objects,则输出到workspace一个滤波器系数集合Hd。也可生成.mat文件,再进行读取load操作。二、从SOS与G中恢复滤波器系数1.函数调用:[B,A]=sos2tf(SOS,G)2.范例:三、从Hd中恢复滤波器系数[B,A]=tf
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- AI快速变现之路,健康与情感咨询
头脑旋风
AI变现之路人工智能
以下是针对健康与情感咨询的AI快速变现方案,包含详细操作流程、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与用户画像工具推荐:Typeform(问卷调研)+ChatGPT(需求分析)+心理测评工具(如MMPI-2)操作步骤:使用Typeform设计健康/情感评估问卷(示例:“最近3个月的压力来源及频率”)输入问卷结果到ChatGPT生成用户画像(如"
- AI快速变现之路,AI视频创作
头脑旋风
AI变现之路人工智能音视频
以下是针对AI视频创作的快速变现方案,包含详细操作步骤、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与脚本生成工具推荐:ChatGPT4.0+ScriptStudio(视频脚本专用工具)操作步骤:通过问卷星收集客户需求(品牌调性/目标平台/时长要求)输入prompt到ChatGPT生成多版本脚本(示例:“生成一个30秒的科技产品广告脚本,风格类似苹果
- 二叉树的简解(计算各层节点个数的公式总结),前序,中序,后序遍历
*^O^*—*^O^*
数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1.树的一些定义2.二叉树的一些性质二叉树的特点两种特殊的二叉树二叉树的性质3.前序,中序,后序遍历前言1.树的一些定义节点的度:一个节点含有的子树的个数称为该节点的度;树的度:一棵树中,最大的节点的度称为树的度;叶子节点或终端节点:度为0的节点称为叶节点;双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父
- 使用Google Cloud Vertex AI构建RAG匹配引擎
vaidfl
python
技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合信息检索和生成技术的框架。在GoogleCloudPlatform的VertexAI中,我们可以利用MatchingEngine来快速高效地从大规模的数据集中检索相关文档或上下文。利用预先创建的索引,RAG能够根据用户提供的问题检索到最有用的信息,并辅助生成更精确的回答。核心原理解析RAG匹配引擎在Verte
- RAG技术落地:核心痛点与应对策略全面解析
山风wind
人工智能人工智能LLMAIGCRAG
RAG技术落地:核心痛点与应对策略全面解析RAG技术落地:核心痛点与应对策略全面解析一、技术实现层的四大挑战二、数据质量管理的生死线三、产业落地的软性痛点四、未来技术演进方向RAG技术落地:核心痛点与应对策略全面解析检索增强生成(RAG)技术凭借其提升内容精准性与上下文关联的优势,成为大规模语言模型应用的热点方向。但在实际落地过程中,开发者和企业仍面临技术实现、数据管理、用户体验等多维度挑战。以下
- 基于C++的Qt计算器
sollllllo
Qt项目c++qt
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、设计计算器界面二、代码分析1.2.总结前言本文是基于C++开发Qt计算器,实现功能有利用鼠标按下数字和运算符实现加减乘除基本运算(+-*/)、Clear清零按键功能实现和退格功能。本例还可以利用数字键盘对数字、加减乘除运算符和清除退格进行交互。但是在每次使用键盘前,建议先用鼠标点击一次=运算符,否则会出现无法计算的er
- 使用HyDE进行高效文档检索:原理与实战
eahba
python
近年来,信息检索领域取得了长足的进步,其中HypotheticalDocumentEmbeddings(HyDE)方法引人瞩目。本文将深入解析HyDE的核心原理,并通过实际代码演示,展示如何利用HyDE进行高效的文档检索。一、技术背景介绍HyDE,全称HypotheticalDocumentEmbeddings,是一种增强检索的方法。它的核心理念在于,对输入查询生成一个假设文档,将该文档进行嵌入,
- 【shell笔记】Linux Shell脚本编程入门知识点全面涵盖
阿毛啊阿阿
shell
本文是我对白树明老师shell课程笔记的总结,课程链接:https://www.bilibili.com/video/BV1j541157Sr?from=search&seid=9757674743771615780一:shell是什么?生成shell脚本shell是什么?1shell是一个程序,采用C语言编写,是用户和Linux内核沟通的桥梁。2shell脚本就是将完成一个任务的所有命令按照执行
- 生成一个完全真实情况下的翌师公会运行机制报告和翌师+ai业务模式的综合价值评估报告
太翌修仙笔录
人工智能
翌师公会项目全景报告——基于行业基准分析与战略定位研究一、项目本体架构1.组织基因解码核心DNA:markdown知识蒸馏力(35%)+技术融合力(28%)+生态构建力(22%)+合规生存力(15%)进化图谱:mermaidtimeline2023Q4:原型验证2024Q2:MVP发布2025Q1:区域扩展2026Q3:生态闭环2.能力雷达图pythonimportmatplotlib.pyplo
- 大模型openai范式接口调用方法
TFATS
LLM大模型算法nlp大模型nlpopenai
本文将介绍如下内容:一、为什么选择OpenAI范式接口?二、调用Openai接口官方调用Demo示例三、自定义调用Openai接口一、为什么选择OpenAI范式接口?OpenAI范式接口因其简洁、统一和高效的设计,成为了与大型语言模型(如GPT系列)交互的行业标准。它的优势在于:统一接口:无论是文本生成还是对话生成,都遵循统一标准,便于开发者快速上手和复用代码。简洁易用:基于HTTP请求的简单设计
- java注释转json插件开发实战
java插件maven
目的将java的代码注释转换为json格式,并写入文件本文介绍了完整的开发流程及如何使用运行环境jdk1.8maven3.x设计思想系统构思编译完成的class里没有注释的,所以注释信息只有在编译代码时存储起来将能够生成javadoc.json的代码做成maven插件关键技术与算法需要实现Doclet必须引入下述jar包,来导入com.sun.javadoc.Docletcom.suntools1
- 在 Ubuntu 上安装 MySQL 的详细指南
m0_74824802
面试学习路线阿里巴巴ubuntumysqladb
在Ubuntu环境中安装mysql-server以及MySQL开发包(包括头文件和动态库文件),并处理最新版本MySQL初始自动生成的用户名和密码,可以通过官方的APT包管理器轻松完成。以下是详细的步骤指南,包括从官方仓库和MySQL官方仓库安装的两种方法,并介绍如何处理自动生成的初始用户名和密码,以及如何修改root初始密码。方法一:使用Ubuntu官方仓库安装步骤一:更新系统包列表首先,确保您
- 深入了解 mica-auto:自动生成 Java SPI 和 Spring Boot 配置的利器
狂飙程序员
javaspringboot数据库
1.mica-auto出现的背景在Java开发中,尤其是在构建SpringBoot项目和使用JavaSPI(ServiceProviderInterface)机制时,开发者常常面临配置文件编写的繁琐问题。1.1JavaSPI的配置痛点JavaSPI是一种服务发现机制,允许第三方为程序提供扩展实现。使用SPI时,需要在META-INF/services目录下创建以接口全限定名命名的文件,并在文件中列
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 多模态|开源多模态模型Emu3 & 多模态预训练模型CLIP对比
产品媛Gloria Deng
AI之眼人工智能AI多模态预训练模型CLIP
Emu3官方介绍我们推出了Emu3,这是一套新的最先进的多模态模型,仅使用next-token预测进行训练!通过将图像、文本和视频分词到一个离散空间中,我们在多模态序列的混合上从头开始训练单个转换器。Emu3在生成和感知方面都表现出色Emu3在生成和感知任务方面都优于几个成熟的任务特定模型,超越了SDXL、LLaVA-1.6和OpenSora-1.2等旗舰开放模型,同时消除了对扩散或组合架构的需求
- 第十三站:卷积神经网络(CNN)的优化
武狐肆骸
机器学习cnn人工智能神经网络
前言:在上一期我们构建了基本的卷积神经网络之后,接下来我们将学习一些提升网络性能的技巧和方法。这些优化技术包括数据增强、网络架构的改进、正则化技术。1.数据增强(DataAugmentation)数据增强是提升深度学习模型泛化能力的一种常见手段。通过对训练数据进行各种随机变换,可以生成更多的训练样本,帮助模型避免过拟合。常见的数据增强方法:旋转(Rotation):随机旋转图像,增强模型对旋转变换
- html5代码大全文库,HTML5标签大全(最终整理版)
cx不二
html5代码大全文库
HTML5标签大全(最终整理版)一、文字备忘之标签HTML5中新增的标签定义文章定义页面内容旁边的内容定义声音内容定义图形定义一个控制按钮指树或表格状数据格式中的动态数据定义一个下拉列表定义一个元素的细节定义会话或人的交谈定义额外的交互内容或插件定义指定元素的标题定义一组媒体内容,以及他们的标题为章节或页面定义一个底部为章节或页面定义一个头部定义文档中某段落的信息定义表单生成的关键定义被标记的文本
- 使用 LangChain 与多种提供者集成:实践指南
VYSAHF
langchain
前言LangChain是一个强大的工具集,专为构建基于大型语言模型的应用而设计。它通过支持多种集成提供者(Providers)扩展了其功能。这些提供者可以涵盖从数据库、嵌入向量存储到生成式AI模型等多个领域。在实际项目中,合理选择和配置这些提供者可以显著提升系统性能和功能。本文将重点介绍LangChain集成的热门提供者,解析其核心原理,展示代码示例,以及分析应用场景,帮助您快速上手。技术背景介绍
- Spring Boot 与 MyBatis 数据库操作
茶本无香
springbootmybatis数据库
一、核心原理SpringBoot的自动配置通过mybatis-spring-boot-starter自动配置DataSource(连接池)、SqlSessionFactory和SqlSessionTemplate。扫描@Mapper接口或指定包路径,生成动态代理实现类。MyBatis的核心组件SqlSessionFactory:生产SqlSession的工厂,负责加载MyBatis配置和映射文件。
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不