- LangChain:Models、Prompts、Indexes、Memory、Chains、Agents。MaxKB
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain人工智能自然语言处理语言模型神经网络
LangChain:Models、Prompts、Indexes、Memory、Chains、Agents在LangChain框架中,Models、Prompts、Indexes、Memory、Chains、Agents是六大核心抽象概念,它们各自承担独特功能,相互协作以助力开发者基于大语言模型构建高效智能应用。Models(模型):指代各类大语言模型(LLM),是提供语言处理和生成能力的基础。如
- laravel11设置中文语言包
码农Robin
laravel
安装中文语言包Laravel11默认没有内置完整中文语言包,推荐使用第三方维护的完整翻译:#通过Composer安装语言包composerrequirelaravel-lang/common--dev#发布中文语言文件到项目phpartisanlang:addzh_CN这会自动将中文语言文件生成到lang/zh_CN目录。配置应用语言修改.env文件设置默认语言:APP_LOCALE=zh_CN或
- 用 CodeGen 告别重复开发:自动化生成数据库访问层代码
go自动化代码生成
简介codegenhttps://github.com/xyzbit/codegen是一个专注于提高开发效率的代码生成工具集合。目前主要包含了数据库访问层(Repository)代码生成功能,未来可能会扩展更多功能模块如:API接口代码生成,API错误码生成,APISDK生成。核心功能:数据库仓储层代码生成(dbrepo)在传统Web开发中,我们常常陷入以下重复劳动:模型层代码手工编写:每张数据库
- web安全——分析应用程序
PT_silver
web安全理论web安全安全
文章目录一、确定用户输入入口点二、确定服务端技术三、解析受攻击面一、确定用户输入入口点在检查枚举应用程序功能时生成的HTTP请求的过程中,用户输入入口点包括:URL文件路径通常,在查询字符?之前的URL部分并不视为用户输入入口,但在REST风格的URL中,查询字符之前的URL部分实际上可作为数据参数。例如:http://eis/shop/browse/electronics/iphone其中的el
- AI取代的不是人类,而是不会使用AI的人
xiaocang668888
人工智能
面对人工智能对职场的深度渗透,职场人需从技能升级、能力重构、思维转型三个维度构建核心竞争力。以下是具体策略:一、技能升级:掌握AI协同工具AI工具链学习掌握主流AI工具(如Claude、Midjourney)的操作逻辑,将重复性工作(数据分析、文档处理)交由AI完成,释放时间用于高阶任务。例如,市场营销人员用AI生成广告初稿后,再注入人性化洞察。技术门槛公式:CAI=任务重复度工具掌握度×业务理解
- 仿12306项目(1)
容器( ु⁎ᴗ_ᴗ⁎)ु.。oO
java
雪花算法为了高效的生成有序且唯一的ID,可以采用雪花算法来进行实现,为什么不去采用UUID呢?首先,UUID是一个128位的值,相较于雪花算法生成的64位的值,长了很多,在数据库中存储时耗费的时间更长,UUID生成后没有顺序关系,导致它不适合做主键,雪花算法排序具有可读性,在一些状况下更容易地追踪。雪花算法的原理IdUtil.getSnowflake有两个参数,第一个时数据中心的编号,第二个时机器
- 大模型最新面试题系列:深度学习基础(二)
人肉推土机
大模型最新面试题集锦大全AI编程人工智能pytorchpython面试
21.解释模型容量与过拟合的关系,如何在理论上平衡两者?模型容量与过拟合的关系模型容量指的是模型能够学习的复杂模式的能力,通常与模型的参数数量、网络结构的复杂度等相关。过拟合是指模型在训练数据上表现很好,但在未见过的测试数据上表现不佳。当模型容量较低时,模型可能无法学习到数据中的复杂模式,导致欠拟合,即在训练集和测试集上的表现都较差。随着模型容量的增加,模型能够学习到更复杂的模式,在训练集上的表现
- 【C语言实战项目】猜数字游戏
修修修也
游戏c语言学习算法笔记开发语言
个人主页:修修修也所属专栏:C语言⚙️操作环境:VisualStudio2022目录一.游戏功能描述二.对功能的实现的分析:三.完整程序代码总结一.游戏功能描述首先简介我们想实现的功能描述:1.程序为用户提供一个菜单,供其选择是否开始游戏2.开始游戏后程序生成一个1~100之间的随机数3.玩家猜数字:1>.猜小了,程序会告诉你猜小了,并且告诉你下次猜的范围2>.猜大了,程序会告诉你猜大了,并且告诉
- 手把手教你用 MinGw 编译并生成 exe 可执行文件
Kurbaneli
c语言
准备工作安装和配置MinGw:从MinGw官方网站下载安装包并完成安装,安装完成后,将MinGw的bin目录添加到系统环境变量PATH中。例如,若安装路径为C:\MinGW,则将C:\MinGW\bin添加到PATH变量。准备源文件:C语言代码示例(test.c)#includeintmain(){printf("Hello,MinGW!\n");return0;}C++语言代码示例(test.c
- 【DeepSeek如何提升渗透测试的效率及防范安全漏铜,从0-1详细教】
生活De°咸鱼
安全专栏AIGC大数据web安全安全性测试AI编程
利用DeepSeek提升渗透测试效率信息收集与资产测绘自动化目标扫描:利用DeepSeek的联网搜索模式(RAG技术),在命令行输入目标网址或相关关键词,获取目标公开信息,如子域名、开放端口、历史漏洞记录等,生成资产拓扑图。例如:输入指令:获取example.com的子域名、开放端口及历史漏洞记录。也可上传目标系统的配置文件、日志或代码库,通过DeepSeek-R1模型分析潜在暴露面,如API密钥
- 超硬核!DeepSeek 全面赋能 FPGA 工程师,实操干货大放送
AI_DL_CODE
fpga开发DeepSeek人工智能深度学习AI大语言模型
摘要:本文聚焦DeepSeek大语言模型在FPGA开发中的实操应用。通过搭建Python通信环境,实现与模型交互,助力FPGA工程师多方面工作。涵盖代码编写与优化,如生成代码框架、获取优化建议;技术文档理解与撰写,像解读复杂文档、辅助撰写报告;问题排查与解决,提供故障诊断思路和解决方案;以及学习与知识拓展,定制学习路径、追踪前沿技术。虽存在挑战,但实操展示了其巨大潜力,为FPGA工程师提供高效工作
- linux c和windows c,windows C 与 linux C区别?
冷承志
linuxc和windowsc
windowsC库格式为.dll(动态链接库英文为DLL,是DynamicLinkLibrary的缩写形式,DLL是一个包含可由多个程序同时使用的代码和数据的库,DLL不是可执行文件)。生成的*.exe。linuxC库格式为.so(.so为共享库:动态库(sharedlibrary/sharedobject/dynamiclinklibrary)。生成*elf(LinuxELFELF=Execut
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- 机器学习中的过拟合、欠拟合与正则化
喜-喜
人工智能机器学习人工智能
在机器学习的世界里,过拟合与欠拟合是模型训练过程中常常会遇到的两大问题,而正则化则是应对过拟合的重要手段。理解它们对于构建高性能的机器学习模型至关重要。一、过拟合与欠拟合(一)过拟合 定义:过拟合指的是模型在训练数据上表现得非常好,几乎能完美地拟合训练数据中的每一个细节,但在测试数据或新数据上却表现很差,泛化能力极低。简单来说,就是模型过度学习了训练数据中的噪声和细节,而忽略了数据背后的真实
- ollama api 中 api/generate 和 api/chat 的区别
喜-喜
人工智能ollama人工智能
在Ollama中,api/generate和api/chat这两个API端点都与文本生成相关,但它们在功能、使用场景和交互方式等方面存在明显区别:功能特点api/generate它是一个相对基础的文本生成端点,主要用于根据给定的提示信息生成一段连续的文本。这个端点会基于输入的提示,按照模型的语言生成能力输出一段完整的内容,更侧重于单纯的文本生成任务。生成过程不依赖于上下文的历史对话信息,每次请求都
- grafana K6压测
xyc1211
测试grafanak6
文章目录installandrunscript.jsoptions最佳实践report解析https://grafana.com/docs/k6/latest/get-startedinstallandruninstall#macbrewinstallk6当前目录下生成压测脚本#createfilescript.jsk6new[filename]#createfile‘script.js’inth
- 大模型控制参数简介
Hns.
人工智能
在使用大模型时,可以通过调整不同的控制参数来优化生成效果和性能。以下是一些常见的控制参数及其用途:1.温度(Temperature)功能:控制生成文本的随机性。温度越高,生成的内容越富创意和多样;温度越低,生成的内容越确定和一致。使用场景:低温(如0.2-0.5):适用于需要准确、稳定的答案(如知识问答)。高温(如0.7-1.0):适用于创意写作或需要多样化的内容。2.最大Token长度(MaxT
- VS C++通过路径遍历文件夹图片并生成xml文件并调用
贫僧这就还俗、
c++xml
记录一下(每次用到的时候还得去找...):网上c++生成xml的方法有很多,这里简单介绍以下opencv自带的FileStorage函数使用方法,1、生成xml文件:#include#includeusingnamespacecv;usingnamespacestd;voidimg_save_xml(Stringimg_path,Stringxml_name){FileStoragefile_st
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
路人与大师
语言模型人工智能自然语言处理
一、系统架构详解1.输入层a.用户行为数据数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。特征工程:行为序列:用户行为的时间顺序,如最近浏览的商品类别。频率与时长:浏览某类商品的频率和时长。转化率:从浏览到购买的转化情况。b.商品数据数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。处理方式:标准化处
- stm32学习之路——使用串口打印日志
程序员kid1412
linux上stm32学习之路stm32学习嵌入式硬件
滴答时钟配置完了,现在调试手段还是只能通过单步断点,断点调试太麻烦也太不稳定。参考linux内核的方式将日志加到串口上,通过串口输出一下日志。串口的配置很简单,这里使用USART2,主要是因为引脚比较好接线。使用同步模式,不配置中断。为了打印日志所以不想搞太复杂,异步或中断还要考虑实现buffer来处理缓冲区问题,可以但没必要,简单最好。配置完就可以生成代码了,生成出来后,查看一下可以用哪些api
- Python常见面试题的详解13
ylfhpy
python开发语言面试
1.以下X是什么类型X=(iforiinrange(10))要点在Python中,变量的类型取决于其赋值的对象。下面代码中的(iforiinrange(10))是一个生成器表达式。生成器表达式是一种简洁的创建生成器的方式,它类似于列表推导式,但使用圆括号而非方括号。生成器是一种特殊的迭代器,它不会一次性生成所有的值,而是在需要时逐个生成,这在处理大量数据时可以节省内存。pythonX=(ifori
- MATLAB利用Filter Design设计滤波器
zxcwxkp
MATLAB数字信号处理
一、FilterDesign设计滤波器设计带通滤波器,若export选中coefficients,则输出到workspace两个数组,SOS与G。若选中objects,则输出到workspace一个滤波器系数集合Hd。也可生成.mat文件,再进行读取load操作。二、从SOS与G中恢复滤波器系数1.函数调用:[B,A]=sos2tf(SOS,G)2.范例:三、从Hd中恢复滤波器系数[B,A]=tf
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- AI快速变现之路,健康与情感咨询
头脑旋风
AI变现之路人工智能
以下是针对健康与情感咨询的AI快速变现方案,包含详细操作流程、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与用户画像工具推荐:Typeform(问卷调研)+ChatGPT(需求分析)+心理测评工具(如MMPI-2)操作步骤:使用Typeform设计健康/情感评估问卷(示例:“最近3个月的压力来源及频率”)输入问卷结果到ChatGPT生成用户画像(如"
- AI快速变现之路,AI视频创作
头脑旋风
AI变现之路人工智能音视频
以下是针对AI视频创作的快速变现方案,包含详细操作步骤、工具推荐及行业应用案例,结合2025年AIGC技术趋势设计:一、核心操作流程详解1.需求分析与脚本生成工具推荐:ChatGPT4.0+ScriptStudio(视频脚本专用工具)操作步骤:通过问卷星收集客户需求(品牌调性/目标平台/时长要求)输入prompt到ChatGPT生成多版本脚本(示例:“生成一个30秒的科技产品广告脚本,风格类似苹果
- 二叉树的简解(计算各层节点个数的公式总结),前序,中序,后序遍历
*^O^*—*^O^*
数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1.树的一些定义2.二叉树的一些性质二叉树的特点两种特殊的二叉树二叉树的性质3.前序,中序,后序遍历前言1.树的一些定义节点的度:一个节点含有的子树的个数称为该节点的度;树的度:一棵树中,最大的节点的度称为树的度;叶子节点或终端节点:度为0的节点称为叶节点;双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父
- 使用Google Cloud Vertex AI构建RAG匹配引擎
vaidfl
python
技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合信息检索和生成技术的框架。在GoogleCloudPlatform的VertexAI中,我们可以利用MatchingEngine来快速高效地从大规模的数据集中检索相关文档或上下文。利用预先创建的索引,RAG能够根据用户提供的问题检索到最有用的信息,并辅助生成更精确的回答。核心原理解析RAG匹配引擎在Verte
- RAG技术落地:核心痛点与应对策略全面解析
山风wind
人工智能人工智能LLMAIGCRAG
RAG技术落地:核心痛点与应对策略全面解析RAG技术落地:核心痛点与应对策略全面解析一、技术实现层的四大挑战二、数据质量管理的生死线三、产业落地的软性痛点四、未来技术演进方向RAG技术落地:核心痛点与应对策略全面解析检索增强生成(RAG)技术凭借其提升内容精准性与上下文关联的优势,成为大规模语言模型应用的热点方向。但在实际落地过程中,开发者和企业仍面临技术实现、数据管理、用户体验等多维度挑战。以下
- 基于C++的Qt计算器
sollllllo
Qt项目c++qt
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、设计计算器界面二、代码分析1.2.总结前言本文是基于C++开发Qt计算器,实现功能有利用鼠标按下数字和运算符实现加减乘除基本运算(+-*/)、Clear清零按键功能实现和退格功能。本例还可以利用数字键盘对数字、加减乘除运算符和清除退格进行交互。但是在每次使用键盘前,建议先用鼠标点击一次=运算符,否则会出现无法计算的er
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不