- 手把手教你使用CloudCanal数据同步工具
高阳很捷迅
数据分析数据库大数据数据库开发数据结构
本文向大家介绍的是CloudCanal数据迁移同步工具,能够实现多种数据源之间的数据同步,并且提供可视化操作界面,帮助我们提升开发效率,让我们一起快速了解CloudCanal并掌握数据同步操作吧~CloudCanal数据同步工具官网:CloudCanal-企业级数据实时同步工具,可视化操作,高效进行多源异构数据源间的数据互通与融合,助力企业构建丰富的数据应用场景社区:主页|Clougence问答社
- 数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
写代码的中青年
3天入门机器学习seleniumbeautifulsoup爬虫pythonxpath正则表达式
专栏介绍1.专栏面向零基础或基础较差的机器学习入门的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。2.专栏内容上包括数据采集、数据读写、数据预处理、分类\回归\聚类算法、可视化等技术。3.需要强调的是,专栏仅介绍主流、初阶知识,每一技术模块都是AI研究的细分领域,同更多技术有所交叠,此处不进行讨论和分享。数据采集技术:selenium/正则匹配/xpa
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- 清华大学:DeepSeek-从入门到精通(文件提取附在最后)
浪子西科
opencv数据挖掘人工智能语言模型
《DeepSeek:从入门到精通》团队专业:由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心撰写。内容丰富DeepSeek简介:对DeepSeek的核心概念、目标、功能及应用场景进行解析,指导用户快速上手。核心功能呈现:涵盖文本生成与创作、自然语言理解与分析、编程支持、数据可视化等。使用方法详述:介绍访问平台方式、DeepSeek基本功能、联网搜索与文件上传等操作。从入
- Nginx+Promtail+Loki+Grafana Nginx日志展示
通过将Nginx、Promtail、Loki和Grafana结合在一起,你可以实现对Nginx日志的集中化管理、查询和可视化。下面是一步一步的安装和配置过程,详细介绍如何展示Nginx的日志。1.安装和配置Nginx首先,确保你的服务器上已经安装了Nginx,并配置日志格式使其与Promtail兼容。安装Nginx:sudoaptupdatesudoaptinstallnginx安装完成后,检查N
- Apache Pinpoint工具介绍
程序员的世界你不懂
效率工具提升apache
ApachePinpoint:分布式系统性能分析与链路追踪一、Pinpoint简介ApachePinpoint是一个开源的分布式追踪系统,专为微服务架构设计,支持HTTP、RPC、MQTT等协议的调用链追踪。其核心功能包括:链路可视化:展示服务间调用关系(调用树、耗时分布)性能分析:定位慢请求、异常错误根源依赖分析:统计服务间流量占比自动化监控:集成Prometheus、Grafana实时告警二、
- 【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)
小哈里
#数据开发语言模型人工智能自然语言处理LLMdeepseek大模型
【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)文章目录1、本地部署LLM(以Ollama为例)2、本地LLM交互界面(以OpenWebUI为例)3、本地部署硬件要求对应表1、本地部署LLM(以Ollama为例)本地部署LLM的框架129k-Ollama1是一个提供简单命令行接口的工具,可以轻松下载和运行本
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- Anaconda 2025 最新版安装与Python环境配置指南(附官方下载链接)
waicsdn_haha
程序员教程pythonlinuxjupyterfpga开发javawindows
一、软件定位与核心功能Anaconda2025是Python/R数据科学集成开发平台,预装1500+科学计算库,新增AI模型可视化调试、多环境GPU加速等特性。相较于传统Python安装,其优势包括:环境隔离:通过conda工具实现多版本Python环境共存包管理:一键安装NumPy/Pandas/Scikit-learn等工具链跨平台支持:Windows/macOS/Linux统一操作逻辑二、安
- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- OmniPlan Pro for Mac 项目管理流程
甜于酸
办公软件macmacos
介绍OmniPlanPromac是一款项目管理流程软件。能被用来优化资源、精简预算快速共享或添加任务,旨在能够帮助您可视化维护和简化项目,包含了自定检视表、阶层式的纲要模式、成本追踪、里程碑、任务限制与相关性、资源分配、时程控制、Gantt图表、违反事项显示、关键路径等等非常实用的多种功能。效果下载百度网盘:https://pan.baidu.com/s/13yi75kSPFx3e5l9mcadt
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- 【Unity 城市环境构建插件】Modern City Package 提供各种高质量的建筑、道路、景观、交通工具和环境特效资源,迅速创建一个充满现代感的城市场景
Unity游戏资源学习屋
Unity插件
ModernCityPackage是一款专为Unity提供的城市环境构建插件,旨在帮助开发者快速创建现代化城市场景。它包含了城市中常见的建筑、道路、景观、交通工具和其他城市环境元素,能够让开发者在短时间内搭建出一个富有现代感的城市环境,适用于游戏、虚拟现实(VR)、建筑可视化等多种项目。主要特点:1.高质量现代建筑资源现代建筑风格:插件提供了多种现代化建筑模型,包括高楼大厦、商业建筑、住宅楼、办公
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- AI 赋能前端开发:ScriptEcho 如何结合低代码/无代码平台引领未来
wangtaohappy
人工智能低代码前端
1.引言前端开发作为用户与应用交互的桥梁,一直面临着效率、复杂性和快速迭代的挑战。随着互联网技术的飞速发展,用户对应用的用户体验要求越来越高,前端开发的任务也变得更加繁重和复杂。与此同时,低代码/无代码平台的兴起为前端开发带来了新的可能性,它们通过可视化界面和预构建组件,大大降低了开发门槛,加速了开发流程。而AI写代码工具的出现,则进一步赋能了前端开发,为解决传统前端开发模式的痛点提供了新的思路。
- Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,<pybind11/functional.h>
沉迷单车的追风少年
深度学习-计算机视觉深度学习pythonpytorch
项目场景:基于深度学习的三维点云可视化问题描述:Traceback(mostrecentcalllast):File".\draw_npy.py",line25,ino3d.visualization.draw_geometries([pcd.points])TypeError:draw_geometries():incompatiblefunctionarguments.Thefollowing
- 使用Python实现数组数据转换为Excel表格
嘿何i
pythonexcelpandas开发语言
在数据分析和处理中,将Python中的数组或列表数据转换为Excel表格是一项常见的任务。本文将详细介绍如何使用Python编程语言和相关库,实现从数组数据到Excel表格的转换过程,包括必要的步骤、代码示例以及实际应用中的注意事项。引言:数组数据到Excel的转换需求在数据科学和工程中,我们经常需要将Python中的数据转换为Excel格式,以便于数据的可视化、共享和进一步分析。Python提供
- 国产替代 | 星环科技Sophon替代SAS,助力大型国有银行智能化营销
星环科技
数据库架构数据挖掘
分布式架构的|国产智能分析工具在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用
- pytorch模型(.pt、.pth)转onnx模型(.onnx)的方法详解
墨小傲
pytorch人工智能python
.pt和.pth只能在pytorch的框架中使用,但是有时我们需要在其他的框架使用模型或者使用模型可视化工具来展示模型(大部分对.pt格式不兼容),这时就需要用到.onnx模型形式来转换了。1、首先你要安装依赖库:onnx和onnxruntimepipinstallonnxpipinstallonnxruntime进行安装2、pytorch模型转换到onnx模型pytorch转onnx仅仅需要一个
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- Spring Boot嵌入式服务器深度解析:从配置到调优的全方位指南
珠峰日记
springboot服务器后端
文章目录引言一、嵌入式服务器核心原理1.1架构设计特点1.2主流服务器对比二、嵌入式服务器配置实战2.1基础配置模板2.2HTTPS安全配置三、高级调优策略3.1线程池优化(Tomcat示例)3.2响应压缩配置3.3访问日志配置四、服务器切换实战4.1切换至Undertow服务器4.2Undertow性能优化配置五、容器健康监控5.1Actuator端点监控5.2可视化监控方案六、生产环境最佳实践
- 企业知识库重塑协作生态与数据价值转化
Baklib-企业帮助文档
其他
内容概要在数字化转型浪潮中,企业知识库作为组织智慧资产的核心载体,其价值已从传统的文档存储演变为驱动协作与创新的智能中枢。以Baklib为代表的平台,通过构建智能中台架构,将分散于各部门的非结构化数据转化为可复用资产,实现知识资源的全生命周期管理。该工具本质上属于数字体验平台(DXP)的范畴,其核心功能涵盖知识沉淀、权限分级、跨系统集成及数据可视化,支持企业建立从内容生产到价值转化的完整闭环。专家
- 【QT教程】QT6硬件高级编程实战案例 QT硬件高级编程
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5c++QT教程
QT6硬件高级编程实战案例使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT6硬件连接与配置1.1硬件平台选择与搭建1.1.1硬件平台选择与搭建硬
- 美颜相机1.0
清梚不喝粥
美颜相机美颜相机
项目开发步骤1界面开发美颜相机界面构成:标题尺寸关闭方式位置可视化2创建主函数调用界面方法3添加两个面板一个是按钮面板一个是图片面板用JPanel4添加按钮到按钮面吧【注意:此时要用初始化按钮面板的方法initBtnPanel并且将按钮添加到按钮面板上面要将按钮面板传到方法中】-用一维字符串数组表示按钮然后通过for循环遍历将按钮文本添加到按钮上面可以获得按钮的背景颜色最后按钮一定要添加到按钮面板
- 《看板工具测评:企业如何挑选效率倍增的“神器”?》
看板工具是什么?[]()看板工具,其概念最早源于20世纪50年代日本丰田生产系统(TPS),最初是一种在生产线上用于控制物料流动的可视化管理工具,旨在减少浪费、提高效率。在丰田的生产模式中,看板就像是一个“信号灯”,当下游环节需要物料时,通过看板向上游环节发出信号,上游环节便按需生产和配送,避免了过度生产和库存积压。随着时间的推移,看板的应用领域不断拓展,特别是在敏捷开发和项目管理理念兴起后,看板
- 钉钉多维表:数据管理与协作的新篇章
ivwdcwso
运维钉钉多维表运维
在当今数字化时代,数据的高效管理和团队协作已成为企业竞争力的关键因素之一。钉钉多维表,作为一款基于钉钉平台的数据协作管理工具,正以其独特的功能和优势,引领着数据管理与协作的新潮流。本文将为您全面解析钉钉多维表的定义、特点、功能亮点、应用场景以及如何使用,让您轻松掌握这一高效工具。一、定义与特点钉钉多维表,是钉钉文档中的一款表格工具,它超越了传统表格的局限,融合了可视化视图、在线协作、低代码等多种功
- 使用Vue-Flow创建一个流程图可视化节点坐标查询器
充气大锤
前端组件vue.js前端javascript笔记
在开发中遇到这样一个需求,需要后端返回数据前端网页生成流程图,由于流程图使用了Vue-Flow,所以需要坐标来辅助后端生成数据。首先引入方法并定义添加节点数据const{updateEdge,addEdges,addNodes}=useVueFlow()constadd_nodes=()=>{constid=nodes.length+1constnewNode={id:`${id}`,label:
- Python 绘图进阶之小提琴图:探索数据分布与多样性
AIDD Learning
Python绘图python开发语言小提琴图数据可视化信息可视化
Python绘图进阶之小提琴图:探索数据分布与多样性引言在数据分析和可视化中,了解数据的分布是至关重要的。除了常用的箱线图外,小提琴图(ViolinPlot)提供了一种更具信息量的可视化方法,它结合了箱线图和核密度估计图的优点,能够展示数据分布的形状、集中趋势以及数据的多样性。本文将带你深入探索如何使用Python绘制小提琴图,并通过实例理解它在数据分析中的独特价值。一、小提琴图的基本概念小提琴图
- python制图之小提琴图
pianmian1
python信息可视化开发语言
提琴图(ViolinPlot)是一种结合了箱线图(BoxPlot)和核密度估计(KernelDensityEstimation,KDE)的可视化工具,用于展示数据的分布情况和概率密度。它在数据可视化中具有独特的作用.本节我们学习如何使用python绘制提琴图#导入所需的库importmatplotlib.pyplotasplt#用于绘图importnumpyasnp#用于数值计算importpan
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。