Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记...

前言

论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于《SCIENCE 》的论文,也是这篇论文揭开了深度学习的序幕。

 

笔记

摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder)。梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值较好时才能得到最优解,不然就容易陷入局部最优解。本文提供了一种有效的初始化权值算法,就是利用深度自动编码网络来学习得到初始权值。这一算法比用主成份分析(PCA)来对数据进行降维更好更有效。

内容

      降维在分类、可视化、通信、高维数据的存储等方面都非常有促进作用。一个简单且广泛应用的方法就是PCA降维,它通过寻找数据中的最大变化方向,然后把每个数据都投影到这些方向构成的坐标系中,并表示出来。本文提出了一种PCA的非线性泛化算法,该算法用一个自适应的多层自动编码网络来把高维数据编码为一个低维数据,同时用一个类似的解码网络来把这个低维数据重构为原高维数据。

      首先,对这两个网络的权值进行随机初始化,然后通过最小化重构项和原始数据之间的误差对权值进行训练。误差的偏导数通过后向传播得到梯度,也就是把误差偏导数先通过解码网络,再通过编码网络进行传播。整个系统叫做自编码器,具体见图1。

                                                                                                      Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记..._第1张图片

                         图1.预训练,就是训练一系列的RBM,每个RBM只有一层特征检测器。前一个RBM学习的特征作为下一个RBM的输入。预训练完成后把RBM展开得到一个深层自动编码网络,然后把误差的偏导数后向传播,用来对这个网络进行微调。

      最优化有多层隐藏层(2-4层)的非线性自编码器的权值比较困难。因为如果权值初始值较大时,自编码器非常容易陷入局部最优解;如果权值初始值较小时,前几层的梯度下降是非常小的,权值更新就非常慢,这样就必须增加自编码器的隐藏层数,不然就训练不出最优值。如果初始权值比较接近最优解,那么就能能过梯度下降法很快训练得到最优解,但是通过一次学习一层特征的算法来找出这样的初始权值非常困难。“预训练”可以很好地解决这一问题,通过“预训练”可以得到比较接近最优解的初始权值。虽然本文中的“预训练”过程是用的二值数据,但是推广到其他真实的数据也是可以的,并且证明是有效的。

      一个二值向量(如:图像)可以通过一个2层网络(即:RBM)来重构,在RBM(文献[5][6])中,通过对称加权连接把随机二值像素点和随机二值特征检测器联系起来。那些像素点相当于RBM的可视化单元,因为它们的状态是可见的;那些特征检测器相当于隐藏单元。可视单元和隐藏单元的联合系统(v,h)之间的能量(文献[7])表示为:

                                                                                         Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记..._第2张图片

 

其中,vi和hj分别是第i个可视层单元和第j个隐藏层单元的状态,bi和bj是偏置项,wji是权值。这个网络通过这个能量函数得到每个可能图像的概率,具体解释见文献[8]。神经元的输入输出关系是sigmoid函数。给定一张输入图像(暂时是以二值图像为例),我们可以通过调整网络的权值和偏置值使得网络对该输入图像的能量最低。权值更新公式如下:

                                                                                                   

      单层的二值网络不足以模拟大量的数据集,因此一般采用多层网络,即把第一层网络的输出作为第二层网络的输入。并且每增加一个网络层,就会提高网络对输入数据重构的log下界概率值,且上层的网络能够提取出其下层网络更高阶的特征。

      当网络的预训练过程完成后,我们需要把解码和编码部分重新拿回来展开构成整个网络,然后用真实的数据作为样本标签来微调网络的参数。

      对于连续的数据,第一个RBM的隐藏层仍然是二值的,但是其可视化层单元是带高斯白噪声的线性单元。如果该噪声是单位方差,隐藏单元的更新规则仍然是一样的,第i个可视化层单元的更新规则是从一个高斯噪声中抽样,这个噪声的方差是单位方差,均值是的平均值。

     在实验中,每个RBM的可视层单元都有真实的[0,1]内激活值,对于高层RBM,其可视化层单元就是前一个RBM的隐藏层单元的激活概率,但是除了最上面一个RBM之外,其他的RBM的隐藏层单元都是随机的二值。最上面一个RBM的隐藏单元是一个随机实值状态,它是从单位方差噪声中抽样得到的,这个单位方差噪声的均值由RBM的可视单元决定。比起PCA,本算法较好地利用了连续变量。预训练和微调的细节见文献[8]。

        交叉熵误差公式如下:

其中,pi是输入数据的重构值。

 

接下来,做了一系列实验。

 

实验

实验基础说明

1.实验代码:http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

2.在CG_MNIST.m中会用到:后向传导算法求各层偏导数df,见“http://ufldl.stanford.edu/wiki/index.php/用反向传导思想求导”

3.一些matlab函数

rem和mod:

  参考资料取模(mod)与取余(rem)的区别——Matlab学习笔记

  通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod唯一的区别在于:
  当x和y的正负号一样的时候,两个函数结果是等同的;当x和y的符号不同时,rem函数结果的符号和x的一样,而mod和y一样。这是由于这两个函数的生成机制不同,rem函数采用fix函数,而mod函数采用了floor函数(这两个函数是用来取整的,fix函数向0方向舍入,floor函数向无穷小方向舍入)。rem(x,y)命令返回的是x-n.*y,如果y不等于0,其中的n = fix(x./y),而mod(x,y)返回的是x-n.*y,当y不等于0时,n=floor(x./y)

4.函数说明

      converter.m:

  实现的功能是将样本集从.ubyte格式转换成.ascii格式,然后继续转换成.mat格式。

  makebatches.m:

  实现的是将原本的2维数据集变成3维的,因为分了多个批次,另外1维表示的是批次。

 

     function [f, df] = CG_MNIST(VV,Dim,XX);

 该函数实现的功能是计算网络代价函数值f,以及f对网络中各个参数值的偏导数df,权值和偏置值是同时处理。其中参数VV为网络中所有参数构成的列向量,参数Dim为每层网络的节点数构成的向量,XX为训练样本集合。f和df分别表示网络的代价函数和偏导函数值。 

  共轭梯度下降的优化函数形式为:

  [X, fX, i] = minimize(X, f, length, P1, P2, P3, ... )

  该函数时使用共轭梯度的方法来对参数X进行优化,所以X是网络的参数值,为一个列向量。f是一个函数的名称,它主要是用来计算网络中的代价函数以及代价函数对各个参数X的偏导函数,f的参数值分别为X,以及minimize函数后面的P1,P2,P3,…使用共轭梯度法进行优化的最大线性搜索长度为length。返回值X为找到的最优参数,fX为在此最优参数X下的代价函数,i为线性搜索的长度(即迭代的次数)。

 

疑问

1.rbm.m的代码中,直接有v1=p(v1|h0),而实际上应该是把p(v1|h0)与均匀分布的随机数比较得出v1,即:01化,但是在该代码中并没有把p(v1|h0)进行01化?为什么?

2.在第4个RBM的预训练代码rbmhidlinear.m中,有这句话: 

poshidprobs =  (data*vishid) + repmat(hidbiases,numcases,1);

即:p(hj=1|v0)=Wji*v0+bj,为什么?

答:因为输出层神经元(即:第4个rbm的隐含层神经元)的激活函数是f(x)=x,而不是原来的logistic函数

3.在把4个RBM展开连接起来,再用训练数据进行微调整个模型的代码backprop.m中这句话:

w4probs = w3probs*w4; w4probs = [w4probs  ones(N,1)];

为什么?

答:因为没有把4个RBM展开前输出层神经元(即:第4个rbm的隐含层神经元)的激活函数是f(x)=x,而不是原来的logistic函数。所以把4个RBM展开并连接起来变为9层神经网络后,它的第5层神经元的激活函数仍然是f(x)=x。

即:下图中节点数为30的网络层神经元激活函数为f(x)=x。

Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记..._第3张图片

 

 

 

 4.backprop.m中这句话:

dataout = 1./(1 + exp(-w7probs*w8));

这里dataout是输出层的输出概率密度,但是它是下面代码中的作用是输出数据或重构数据,为什么?

答:原因不知道。但从这里可推导出:输出层的输出概率密度=重构数据的概率密度=重构数据

 

实验步骤

1.加载数据集,并转换为.mat格式,即代码中的converter.m;

2.依次预训练4个rbm,并把前一个rbm的输入作为后一个rbm的输入,见rbm.m;

3.把4个rbm展开成图1中的“Unrolling”部分,计算该网络的代价函数及其对各权值的偏导数,见CG_MNIST.m;

4.利用共轭梯度下降法对代价函数进行优化,见minimize.m。

 

实验结果

Train squared error:  4.318

Test squared error:  4.520

Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记..._第4张图片

 

代码

mnistdeepauto.m

% Version 1.000
%
% Code provided by Ruslan Salakhutdinov and Geoff Hinton  
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our 
% web page. 
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.


% This program pretrains a deep autoencoder for MNIST dataset
% You can set the maximum number of epochs for pretraining each layer
% and you can set the architecture of the multilayer net.

clear all
close all

maxepoch=10; %最大迭代次数  In the Science paper we use maxepoch=50, but it works just fine. 
numhid=1000; numpen=500; numpen2=250; numopen=30;

fprintf(1,'Converting Raw files into Matlab format \n');
converter; % 把测试数据集和训练数据集转换为.mat格式

fprintf(1,'Pretraining a deep autoencoder. \n');
fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch);

makebatches;% 把数据集及其标签进行打包或分批,方便以后分批进行处理,因为数据太大了,这样可加快学习速率
[numcases numdims numbatches]=size(batchdata);%返回训练数据集的大小

fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid);
restart=1;
rbm;             %预训练第1个rbm
hidrecbiases=hidbiases; % 第一个rbm的隐含层偏置项
save mnistvh vishid hidrecbiases visbiases;% 保存第1个rbm的权值、隐含层偏置项、可视化层偏置项,为mnistvh.mat

fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen);
batchdata=batchposhidprobs;% 第1个rbm中整个数据第一次正向传播时隐含层的输出概率(注意:不是把概率01化后的输出状态),作为第2个rbm的输入数据
numhid=numpen;% 第2个rbm的隐含层神经元数
restart=1;
rbm;       %预训练第2个rbm
hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases;
save mnisthp hidpen penrecbiases hidgenbiases;% 保存第2个rbm的权值、隐含层偏置项、可视化层偏置项,为mnisthp.mat

fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2);
batchdata=batchposhidprobs;% 第2个rbm中整个数据第一次正向传播时隐含层的输出概率,作为第3个rbm的输入数据(注意:不是把概率01化后的输出状态作为输入数据)
numhid=numpen2;
restart=1;
rbm;       %预训练第3个rbm
hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases;
save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;% 保存第3个rbm的权值、隐含层偏置项、可视化层偏置项,为mnisthp2.mat

fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen);
batchdata=batchposhidprobs;% 第3个rbm中整个数据第一次正向传播时隐含层的输出概率,作为第4个rbm的输入数据
numhid=numopen; 
restart=1;
rbmhidlinear;      % 预训练第4个rbm,但是注意输出层单元激活函数是1,而不再是logistic函数
hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases;
save mnistpo hidtop toprecbiases topgenbiases;% 保存第4个rbm的权值、隐含层偏置项、可视化层偏置项,为mnistpo.mat

backprop; % 把4个RBM展开连接起来,再用训练数据进行微调整个模型

 

converter.m

% Version 1.000
% % 作用:把测试数据集和训练数据集转换为.mat格式
% 最终得到的测试数据集:test(0~9).mat
% 最终得到的训练数据集:digit(0~9).mat
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

% This program reads raw MNIST files available at 
% http://yann.lecun.com/exdb/mnist/ 
% and converts them to files in matlab format 
% Before using this program you first need to download files:
% train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz 
% t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz
% and gunzip them. You need to allocate some space for this.  

% This program was originally written by Yee Whye Teh 

%% 首先转换测试数据集的格式 Work with test files first 
fprintf(1,'You first need to download files:\n train-images-idx3-ubyte.gz\n train-labels-idx1-ubyte.gz\n t10k-images-idx3-ubyte.gz\n t10k-labels-idx1-ubyte.gz\n from http://yann.lecun.com/exdb/mnist/\n and gunzip them \n'); 

f = fopen('t10k-images.idx3-ubyte','r');
[a,count] = fread(f,4,'int32');
  
g = fopen('t10k-labels.idx1-ubyte','r');
[l,count] = fread(g,2,'int32');

fprintf(1,'Starting to convert Test MNIST images (prints 10 dots) \n'); 
n = 1000;

Df = cell(1,10);
for d=0:9,
  Df{d+1} = fopen(['test' num2str(d) '.ascii'],'w');
end;
  
for i=1:10,
  fprintf('.');
  rawimages = fread(f,28*28*n,'uchar');
  rawlabels = fread(g,n,'uchar');
  rawimages = reshape(rawimages,28*28,n);

  for j=1:n,
    fprintf(Df{rawlabels(j)+1},'%3d ',rawimages(:,j));
    fprintf(Df{rawlabels(j)+1},'\n');
  end;
end;

fprintf(1,'\n');
for d=0:9,
  fclose(Df{d+1});
  D = load(['test' num2str(d) '.ascii'],'-ascii');%这个test.ascii文件从哪来的?
  fprintf('%5d Digits of class %d\n',size(D,1),d);
  save(['test' num2str(d) '.mat'],'D','-mat');
end;


%% 然后转换训练数据集的格式Work with trainig files second  
f = fopen('train-images.idx3-ubyte','r');
[a,count] = fread(f,4,'int32');

g = fopen('train-labels.idx1-ubyte','r');
[l,count] = fread(g,2,'int32');

fprintf(1,'Starting to convert Training MNIST images (prints 60 dots)\n'); 
n = 1000;

Df = cell(1,10);
for d=0:9,
  Df{d+1} = fopen(['digit' num2str(d) '.ascii'],'w');
end;

for i=1:60,
  fprintf('.');
  rawimages = fread(f,28*28*n,'uchar');
  rawlabels = fread(g,n,'uchar');
  rawimages = reshape(rawimages,28*28,n);

  for j=1:n,
    fprintf(Df{rawlabels(j)+1},'%3d ',rawimages(:,j));
    fprintf(Df{rawlabels(j)+1},'\n');
  end;
end;

fprintf(1,'\n');
for d=0:9,
  fclose(Df{d+1});
  D = load(['digit' num2str(d) '.ascii'],'-ascii');
  fprintf('%5d Digits of class %d\n',size(D,1),d);
  save(['digit' num2str(d) '.mat'],'D','-mat');
end;

dos('rm *.ascii');

 

makebatches.m

% Version 1.000
% 作用:把数据集及其标签进行分批,方便以后分批进行处理,因为数据太大了,分批处理可加快学习速率
% 训练数据集及标签的打包结果:batchdata、batchtargets
% 测试数据集及标签的打包结果:testbatchdata、testbatchtargets

% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

%% 训练数据集分批
digitdata=[]; % 训练数据
targets=[];   % 训练数据的标签
load digit0; digitdata = [digitdata; D]; targets = [targets; repmat([1 0 0 0 0 0 0 0 0 0], size(D,1), 1)];  
load digit1; digitdata = [digitdata; D]; targets = [targets; repmat([0 1 0 0 0 0 0 0 0 0], size(D,1), 1)];
load digit2; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 1 0 0 0 0 0 0 0], size(D,1), 1)]; 
load digit3; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 1 0 0 0 0 0 0], size(D,1), 1)];
load digit4; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 1 0 0 0 0 0], size(D,1), 1)]; 
load digit5; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 1 0 0 0 0], size(D,1), 1)];
load digit6; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 1 0 0 0], size(D,1), 1)];
load digit7; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 1 0 0], size(D,1), 1)];
load digit8; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 1 0], size(D,1), 1)];
load digit9; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 0 1], size(D,1), 1)];
digitdata = digitdata/255;% 简单缩放归一化

totnum=size(digitdata,1);%训练样本数:60000
fprintf(1, 'Size of the training dataset= %5d \n', totnum);

rand('state',0); %so we know the permutation of the training data
randomorder=randperm(totnum);% 产生totnum个小于等于totnum的正整数

numbatches=totnum/100;          % 批数:600
numdims  =  size(digitdata,2);  % 每个训练样本的维数:784
batchsize = 100;                % 每个batch中的训练样本数:100
batchdata = zeros(batchsize, numdims, numbatches);
batchtargets = zeros(batchsize, 10, numbatches);

for b=1:numbatches
  batchdata(:,:,b) = digitdata(randomorder(1+(b-1)*batchsize:b*batchsize), :);
  batchtargets(:,:,b) = targets(randomorder(1+(b-1)*batchsize:b*batchsize), :);
end;
clear digitdata targets;

%% 测试数据集分批
digitdata=[];
targets=[];
load test0; digitdata = [digitdata; D]; targets = [targets; repmat([1 0 0 0 0 0 0 0 0 0], size(D,1), 1)]; 
load test1; digitdata = [digitdata; D]; targets = [targets; repmat([0 1 0 0 0 0 0 0 0 0], size(D,1), 1)]; 
load test2; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 1 0 0 0 0 0 0 0], size(D,1), 1)];
load test3; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 1 0 0 0 0 0 0], size(D,1), 1)];
load test4; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 1 0 0 0 0 0], size(D,1), 1)];
load test5; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 1 0 0 0 0], size(D,1), 1)];
load test6; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 1 0 0 0], size(D,1), 1)];
load test7; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 1 0 0], size(D,1), 1)];
load test8; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 1 0], size(D,1), 1)];
load test9; digitdata = [digitdata; D]; targets = [targets; repmat([0 0 0 0 0 0 0 0 0 1], size(D,1), 1)];
digitdata = digitdata/255;

totnum=size(digitdata,1);
fprintf(1, 'Size of the test dataset= %5d \n', totnum);

rand('state',0); %so we know the permutation of the training data
randomorder=randperm(totnum);

numbatches=totnum/100;
numdims  =  size(digitdata,2);
batchsize = 100;
testbatchdata = zeros(batchsize, numdims, numbatches);
testbatchtargets = zeros(batchsize, 10, numbatches);

for b=1:numbatches
  testbatchdata(:,:,b) = digitdata(randomorder(1+(b-1)*batchsize:b*batchsize), :);
  testbatchtargets(:,:,b) = targets(randomorder(1+(b-1)*batchsize:b*batchsize), :);
end;
clear digitdata targets;


%%% Reset random seeds 
rand('state',sum(100*clock)); 
randn('state',sum(100*clock)); 

 

rbm.m

% Version 1.000 
% 作用:训练RBM,利用1步CD算法
% Code provided by Geoff Hinton and Ruslan Salakhutdinov 
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

% This program trains Restricted Boltzmann Machine in which
% visible, binary, stochastic pixels are connected to
% hidden, binary, stochastic feature detectors using symmetrically
% weighted connections. Learning is done with 1-step Contrastive Divergence.   
% The program assumes that the following variables are set externally:
% maxepoch  -- 最大迭代次数maximum number of epochs
% numhid    -- 隐含层神经元数number of hidden units 
% batchdata -- 分批后的训练数据集the data that is divided into batches (numcases numdims numbatches)
% restart   -- 如果从第1层开始学习,就置restart为1.set to 1 if learning starts from beginning 

epsilonw      = 0.1;   % 权值的学习速率Learning rate for weights 
epsilonvb     = 0.1;   % 可视化层偏置项的学习速率Learning rate for biases of visible units 
epsilonhb     = 0.1;   % 隐含层偏置项的学习速率Learning rate for biases of hidden units 
weightcost  = 0.0002;  % 权衰减,用于防止出现过拟合,见论文“受限波尔兹曼机RBM”
initialmomentum  = 0.5;% 动量项学习率,用于克服收敛速度和算法的不稳定性之间的矛盾
finalmomentum    = 0.9;

[numcases numdims numbatches]=size(batchdata);%[numcases numdims numbatches]=[每批中的样本数 每个样本的维数 训练样本批数]

if restart ==1,
  restart=0;
  epoch=1;

% Initializing symmetric weights and biases. 
  vishid     = 0.1*randn(numdims, numhid);% 连接权值Wij
  hidbiases  = zeros(1,numhid);           % 隐含层偏置项ci
  visbiases  = zeros(1,numdims);          % 可视化层偏置项bj

  poshidprobs = zeros(numcases,numhid);%100*1000,单个batch第一次正向传播时隐含层的输出概率p(h|v0)
  neghidprobs = zeros(numcases,numhid);%第二次正向传播时隐含层的输出概率p(h|v1)
  posprods    = zeros(numdims,numhid);% posprods表示p(hi=1|v0)*v0,以后更新detaWij时会用到这一项
  negprods    = zeros(numdims,numhid);% negprods表示p(hi=1|v1)*v1,以后更新detaWij时会用到这一项
  vishidinc  = zeros(numdims,numhid);% 权值更新的增量deta Wji
  hidbiasinc = zeros(1,numhid);      % 隐含层偏置项更新的增量deta bj
  visbiasinc = zeros(1,numdims);     % 可视化层偏置项更新的增量deta ci
  batchposhidprobs=zeros(numcases,numhid,numbatches);% 整个数据第一次正向传播时隐含层的输出概率
end

for epoch = epoch:maxepoch,
 fprintf(1,'epoch %d\r',epoch); 
 errsum=0;
 for batch = 1:numbatches,
 fprintf(1,'epoch %d batch %d\r',epoch,batch); 

%%%%%%%%% 求正项部分 START POSITIVE PHASE %%%%%%%%%%%%%%%%%以下的代码请对照“深度学习笔记_-_RBM”看%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  data = batchdata(:,:,batch);% data表示可视化层初始数据v0,每次迭代都需要取出一个batch的数据,每一行代表一个样本值(这里的数据是double的,不是01的,严格的说后面应将其01化)
  poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));% 样本第一次正向传播时隐含层节点的输出概率,即:p(hj=1|v0)       
  batchposhidprobs(:,:,batch)=poshidprobs;
  posprods    = data' * poshidprobs;% posprods表示p(hi=1|v0)*v0,以后更新detaWij时会用到这一项
  poshidact   = sum(poshidprobs);% 所有p(hi=1|v0)的累加,以后更新deta ci时会用到这一项
  posvisact = sum(data);% 所有v0的累加,以后更新deta bj时会用到这一项

%%%%%%%%% END OF POSITIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  poshidstates = poshidprobs > rand(numcases,numhid); %poshidstates表示隐含层的状态h0,将隐含层数据01化(此步骤在posprods之后进行),按照概率值大小来判定.
                                                      %rand(m,n)为产生m*n大小的矩阵,矩阵中元素为(0,1)之间的均匀分布。
  
%%%%%%%%%求负项部分 START NEGATIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  negdata = 1./(1 + exp(-poshidstates*vishid' - repmat(visbiases,numcases,1)));% 从下面来推断,negdata表示第一次反向进行时的可视层数据v1,但从其表达式上推断negdata实际上是p(v1|h0),这里为什么没有将p(v1|h0)数据01,从而变为v1?而是直接v1=p(v1|h0)?感觉不对
  neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1))); % 第一次反向进行后又马上正向传播的隐含层概率值,即:p(hj=1|v1)   
  negprods  = negdata'*neghidprobs;% negprods表示p(hi=1|v1)*v1,以后更新detaWij时会用到这一项
  neghidact = sum(neghidprobs);    % 所有p(hi=1|v1)的累加,以后更新deta ci时会用到这一项
  negvisact = sum(negdata);        % 所有v1的累加,以后更新deta bj时会用到这一项

%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  err= sum(sum( (data-negdata).^2 ));
  errsum = err + errsum;

   if epoch>5,
     momentum=finalmomentum;%0.5,momentum表示保持上一次更新增量的比例,如果迭代次数越少,则这个比例值可以稍微大一点
   else
     momentum=initialmomentum;%0.9
   end;

%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    vishidinc = momentum*vishidinc + ...  %vishidinc表示权值更新时的增量deta Wij;
                epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);% posprods-negprods表示deta W,weightcost*vishid表示权衰减项,防止出现过拟合
    visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);% (posvisact-negvisact)表示 deta bj
    hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);% (poshidact-neghidact)表示 deta ci

    vishid = vishid + vishidinc;
    visbiases = visbiases + visbiasinc;
    hidbiases = hidbiases + hidbiasinc;

%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  end
  fprintf(1, 'epoch %4i error %6.1f  \n', epoch, errsum); 
end;

 

rbmhidlinear.m

% Version 1.000
% 作用:训练最顶层的一个RBM
% 输出层神经元的激活函数为1,是线性的,不再是sigmoid函数,所以该函数名字叫:rbmhidlinear.m
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

% This program trains Restricted Boltzmann Machine in which
% visible, binary, stochastic pixels are connected to
% hidden, tochastic real-valued feature detectors drawn from a unit
% variance Gaussian whose mean is determined by the input from 
% the logistic visible units. Learning is done with 1-step Contrastive Divergence.
% The program assumes that the following variables are set externally:
% maxepoch  -- maximum number of epochs
% numhid    -- number of hidden units
% batchdata -- the data that is divided into batches (numcases numdims numbatches)
% restart   -- set to 1 if learning starts from beginning

epsilonw      = 0.001; % Learning rate for weights 
epsilonvb     = 0.001; % Learning rate for biases of visible units
epsilonhb     = 0.001; % Learning rate for biases of hidden units 
weightcost  = 0.0002;  
initialmomentum  = 0.5;
finalmomentum    = 0.9;


[numcases numdims numbatches]=size(batchdata);

if restart ==1,
  restart=0;
  epoch=1;

% Initializing symmetric weights and biases.
  vishid     = 0.1*randn(numdims, numhid);
  hidbiases  = zeros(1,numhid);
  visbiases  = zeros(1,numdims);


  poshidprobs = zeros(numcases,numhid);
  neghidprobs = zeros(numcases,numhid);
  posprods    = zeros(numdims,numhid);
  negprods    = zeros(numdims,numhid);
  vishidinc  = zeros(numdims,numhid);
  hidbiasinc = zeros(1,numhid);
  visbiasinc = zeros(1,numdims);
  sigmainc = zeros(1,numhid);
  batchposhidprobs=zeros(numcases,numhid,numbatches);
end

for epoch = epoch:maxepoch,
 fprintf(1,'epoch %d\r',epoch); 
 errsum=0;

 for batch = 1:numbatches,
 fprintf(1,'epoch %d batch %d\r',epoch,batch);

%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  data = batchdata(:,:,batch);
  poshidprobs =  (data*vishid) + repmat(hidbiases,numcases,1);% 样本第一次正向传播时隐含层节点的输出值,即:p(hj=1|v0)
                                                              % 为什么是这个表达式:p(hj=1|v0)=Wji*v0+bj ?因为输出层激活函数为1
  batchposhidprobs(:,:,batch)=poshidprobs;
  posprods    = data' * poshidprobs;
  poshidact   = sum(poshidprobs);
  posvisact = sum(data);
  
%%%%%%%%% END OF POSITIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
poshidstates = poshidprobs+randn(numcases,numhid);% h0:非概率密度,而是01后的实值

%%%%%%%%% START NEGATIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  negdata = 1./(1 + exp(-poshidstates*vishid' - repmat(visbiases,numcases,1)));% v1=p(v1|h0)?
  neghidprobs = (negdata*vishid) + repmat(hidbiases,numcases,1);%为什么是这个表达式p(hj=1|v1)=Wji*v1+bj ? neghidprobs表示样本第二次正向传播时隐含层节点的输出值,即:p(hj=1|v1)
  negprods  = negdata'*neghidprobs;
  neghidact = sum(neghidprobs);
  negvisact = sum(negdata); 

%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


  err= sum(sum( (data-negdata).^2 )); 
  errsum = err + errsum;
   if epoch>5,
     momentum=finalmomentum;
   else
     momentum=initialmomentum;
   end;

%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    vishidinc = momentum*vishidinc + ...
                epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
    visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
    hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
    vishid = vishid + vishidinc;
    visbiases = visbiases + visbiasinc;
    hidbiases = hidbiases + hidbiasinc;

%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 end
fprintf(1, 'epoch %4i error %f \n', epoch, errsum);

end

 

backprop.m

% Version 1.000
% 作用:把4个RBM展开连接起来,再用训练数据进行微调整个模型。相当于论文图1中的“Unrolling”部分,
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

% This program fine-tunes an autoencoder with backpropagation.
% Weights of the autoencoder are going to be saved in mnist_weights.mat
% and trainig and test reconstruction errors in mnist_error.mat
% You can also set maxepoch, default value is 200 as in our paper.  

maxepoch=200;
fprintf(1,'\nFine-tuning deep autoencoder by minimizing cross entropy error. \n');
fprintf(1,'60 batches of 1000 cases each. \n');% 60个batch,每个batch1000个样本

load mnistvh
load mnisthp
load mnisthp2
load mnistpo 

makebatches;
[numcases numdims numbatches]=size(batchdata);
N=numcases; 

%%%% PREINITIALIZE WEIGHTS OF THE AUTOENCODER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
w1=[vishid; hidrecbiases];    % [W1;b1] 分别装载每层的权值和偏置值,将它们作为一个整体
w2=[hidpen; penrecbiases];    % [W2;b2]
w3=[hidpen2; penrecbiases2];  % [W3;b3]
w4=[hidtop; toprecbiases];    % [W4;b4]
w5=[hidtop'; topgenbiases];   % [W4';v4]
w6=[hidpen2'; hidgenbiases2]; % [W3';v3]
w7=[hidpen'; hidgenbiases];   % [W2';v2]
w8=[vishid'; visbiases];      % [W1';v1]

%%%%%%%%%% END OF PREINITIALIZATIO OF WEIGHTS  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

l1=size(w1,1)-1;% 每个网络层中节点的个数
l2=size(w2,1)-1;
l3=size(w3,1)-1;
l4=size(w4,1)-1;
l5=size(w5,1)-1;
l6=size(w6,1)-1;
l7=size(w7,1)-1;
l8=size(w8,1)-1;
l9=l1;           % 输出层节点和输入层的一样
test_err=[];
train_err=[];


for epoch = 1:maxepoch

%%  %%%%%%%%%%%%%%%%%% 计算训练误差 COMPUTE TRAINING RECONSTRUCTION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err=0; 
[numcases numdims numbatches]=size(batchdata);
N=numcases;
 for batch = 1:numbatches
  data = [batchdata(:,:,batch)];
  data = [data ones(N,1)];
  w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs  ones(N,1)];%正向传播,计算每一层的输出概率密度p(h|v),且同时在输出上增加一维(值为常量1)
  w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)];
  w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs  ones(N,1)];
  w4probs = w3probs*w4; w4probs = [w4probs  ones(N,1)];
  w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs  ones(N,1)];
  w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs  ones(N,1)];
  w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs  ones(N,1)];
  dataout = 1./(1 + exp(-w7probs*w8));% 输出层的输出概率密度,即:重构数据的概率密度,也即:重构数据
  err= err +  1/N*sum(sum( (data(:,1:end-1)-dataout).^2 )); % 每个batch内的均方误差
  end
 train_err(epoch)=err/numbatches;% 迭代第epoch次的所有样本内的均方误差

%%%%%%%%%%%%%% END OF COMPUTING TRAINING RECONSTRUCTION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%  %% DISPLAY FIGURE TOP ROW REAL DATA BOTTOM ROW RECONSTRUCTIONS 显示真实数据和重构数据 %%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,'Displaying in figure 1: Top row - real data, Bottom row -- reconstructions \n');
output=[];
 for ii=1:15
  output = [output data(ii,1:end-1)' dataout(ii,:)'];%output为15(因为是显示15个数字)组,每组2列,分别为理论值和重构值
 end
   if epoch==1 
   close all 
   figure('Position',[100,600,1000,200]);
   else 
   figure(1)
   end 
   mnistdisp(output);%显示图片
   drawnow;%刷新屏幕

%% %%%%%%%%%%%%%%%%%% 计算测试误差 COMPUTE TEST RECONSTRUCTION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[testnumcases testnumdims testnumbatches]=size(testbatchdata);% [100 784 100] 测试数据为100个batch,每个batch含100个测试样本,每个样本维数为784
N=testnumcases;
err=0;
for batch = 1:testnumbatches
  data = [testbatchdata(:,:,batch)];
  data = [data ones(N,1)];
  w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs  ones(N,1)];
  w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)];
  w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs  ones(N,1)];
  w4probs = w3probs*w4; w4probs = [w4probs  ones(N,1)];
  w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs  ones(N,1)];
  w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs  ones(N,1)];
  w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs  ones(N,1)];
  dataout = 1./(1 + exp(-w7probs*w8));
  err = err +  1/N*sum(sum( (data(:,1:end-1)-dataout).^2 ));
  end
 test_err(epoch)=err/testnumbatches;
 fprintf(1,'Before epoch %d Train squared error: %6.3f Test squared error: %6.3f \t \t \n',epoch,train_err(epoch),test_err(epoch));

%%%%%%%%%%%%%% END OF COMPUTING TEST RECONSTRUCTION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
 tt=0;
 for batch = 1:numbatches/10          % 训练样本:批数numbatches是600,每个batch内100个样本,组合后变为批数60,每个batch1000个样本
 fprintf(1,'epoch %d batch %d\r',epoch,batch);

%%%%%%%%%%% 在训练数据内组合10个mini-batch为一个larger-batch ,COMBINE 10 MINIBATCHES INTO 1 LARGER MINIBATCH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 tt=tt+1; 
 data=[];
 for kk=1:10
  data=[data 
        batchdata(:,:,(tt-1)*10+kk)]; %使训练数据变为60个batch,每个batch内含1000个样本
 end 

%%%%%%%%%%%%%%% PERFORM CONJUGATE GRADIENT WITH 3 LINESEARCHES 进行共轭梯度3次线性搜索%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  max_iter=3;
  VV = [w1(:)' w2(:)' w3(:)' w4(:)' w5(:)' w6(:)' w7(:)' w8(:)']';% 把所有权值(已经包括了偏置值)变成一个大的列向量
  Dim = [l1; l2; l3; l4; l5; l6; l7; l8; l9];% 每层网络对应节点的个数(不包括偏置值)

  [X, fX] = minimize(VV,'CG_MNIST',max_iter,Dim,data);% X为3次线性搜索最优化后得到的权值参数,是一个列向量

  w1 = reshape(X(1:(l1+1)*l2),l1+1,l2);
  xxx = (l1+1)*l2;
  w2 = reshape(X(xxx+1:xxx+(l2+1)*l3),l2+1,l3);
  xxx = xxx+(l2+1)*l3;
  w3 = reshape(X(xxx+1:xxx+(l3+1)*l4),l3+1,l4);
  xxx = xxx+(l3+1)*l4;
  w4 = reshape(X(xxx+1:xxx+(l4+1)*l5),l4+1,l5);
  xxx = xxx+(l4+1)*l5;
  w5 = reshape(X(xxx+1:xxx+(l5+1)*l6),l5+1,l6);
  xxx = xxx+(l5+1)*l6;
  w6 = reshape(X(xxx+1:xxx+(l6+1)*l7),l6+1,l7);
  xxx = xxx+(l6+1)*l7;
  w7 = reshape(X(xxx+1:xxx+(l7+1)*l8),l7+1,l8);
  xxx = xxx+(l7+1)*l8;
  w8 = reshape(X(xxx+1:xxx+(l8+1)*l9),l8+1,l9);%依次重新赋值为优化后的参数

%%%%%%%%%%%%%%% END OF CONJUGATE GRADIENT WITH 3 LINESEARCHES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 end

 save mnist_weights w1 w2 w3 w4 w5 w6 w7 w8 
 save mnist_error test_err train_err;

end

 

CG_MNIST.m

% Version 1.000
% 得到代价函数及其对各权值的偏导数
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

function [f, df] = CG_MNIST(VV,Dim,XX)
% VV:权值(已经包括了偏置值),为一个大的列向量
% Dim:每层网络对应节点的个数
% XX:训练样本
% f :代价函数,即交叉熵误差
% df :代价函数对各权值的偏导数


l1 = Dim(1);%每层网络对应节点的个数(不包括偏置值)
l2 = Dim(2);
l3 = Dim(3);
l4= Dim(4);
l5= Dim(5);
l6= Dim(6);
l7= Dim(7);
l8= Dim(8);
l9= Dim(9);
N = size(XX,1);% 样本的个数

% Do decomversion.下面一系列步骤完成权值的矩阵化
 w1 = reshape(VV(1:(l1+1)*l2),l1+1,l2);% VV是一个长的列向量,它包括偏置值和权值,这里取出的向量已经包括了偏置值
 xxx = (l1+1)*l2; %xxx 表示已经使用了的长度
 w2 = reshape(VV(xxx+1:xxx+(l2+1)*l3),l2+1,l3);
 xxx = xxx+(l2+1)*l3;
 w3 = reshape(VV(xxx+1:xxx+(l3+1)*l4),l3+1,l4);
 xxx = xxx+(l3+1)*l4;
 w4 = reshape(VV(xxx+1:xxx+(l4+1)*l5),l4+1,l5);
 xxx = xxx+(l4+1)*l5;
 w5 = reshape(VV(xxx+1:xxx+(l5+1)*l6),l5+1,l6);
 xxx = xxx+(l5+1)*l6;
 w6 = reshape(VV(xxx+1:xxx+(l6+1)*l7),l6+1,l7);
 xxx = xxx+(l6+1)*l7;
 w7 = reshape(VV(xxx+1:xxx+(l7+1)*l8),l7+1,l8);
 xxx = xxx+(l7+1)*l8;
 w8 = reshape(VV(xxx+1:xxx+(l8+1)*l9),l8+1,l9);


  XX = [XX ones(N,1)];% 训练样本,加1维使其下可乘w1
  w1probs = 1./(1 + exp(-XX*w1)); w1probs = [w1probs  ones(N,1)];
  w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)];
  w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs  ones(N,1)];
  w4probs = w3probs*w4; w4probs = [w4probs  ones(N,1)];% 第5层神经元激活函数为1,而不是logistic函数
  w5probs = 1./(1 + exp(-w4probs*w5)); w5probs = [w5probs  ones(N,1)];
  w6probs = 1./(1 + exp(-w5probs*w6)); w6probs = [w6probs  ones(N,1)];
  w7probs = 1./(1 + exp(-w6probs*w7)); w7probs = [w7probs  ones(N,1)];
  XXout = 1./(1 + exp(-w7probs*w8));% 输出层的概率密度,也就是重构数据

f = -1/N*sum(sum( XX(:,1:end-1).*log(XXout) + (1-XX(:,1:end-1)).*log(1-XXout)));%代价函数,即交叉熵误差,怎么推导的?可见论文最后一页
IO = 1/N*(XXout-XX(:,1:end-1));% 重构误差
%% % 用后向传导算法求各层偏导数df,见“http://ufldl.stanford.edu/wiki/index.php/用反向传导思想求导”
Ix8=IO; % 相当于输出层“残差”
dw8 =  w7probs'*Ix8;% 用后向传导算法求输出层偏导数

Ix7 = (Ix8*w8').*w7probs.*(1-w7probs); % 第7层“残差”
Ix7 = Ix7(:,1:end-1);
dw7 =  w6probs'*Ix7;  % 第7层偏导数

Ix6 = (Ix7*w7').*w6probs.*(1-w6probs); 
Ix6 = Ix6(:,1:end-1);
dw6 =  w5probs'*Ix6;

Ix5 = (Ix6*w6').*w5probs.*(1-w5probs); 
Ix5 = Ix5(:,1:end-1);
dw5 =  w4probs'*Ix5;

Ix4 = (Ix5*w5');
Ix4 = Ix4(:,1:end-1);
dw4 =  w3probs'*Ix4;

Ix3 = (Ix4*w4').*w3probs.*(1-w3probs); 
Ix3 = Ix3(:,1:end-1);
dw3 =  w2probs'*Ix3;

Ix2 = (Ix3*w3').*w2probs.*(1-w2probs); 
Ix2 = Ix2(:,1:end-1);
dw2 =  w1probs'*Ix2;

Ix1 = (Ix2*w2').*w1probs.*(1-w1probs); 
Ix1 = Ix1(:,1:end-1);
dw1 =  XX'*Ix1;

df = [dw1(:)' dw2(:)' dw3(:)' dw4(:)' dw5(:)' dw6(:)'  dw7(:)'  dw8(:)'  ]'; %网络代价函数的偏导数

 

minimize.m

function [X, fX, i] = minimize(X, f, length, varargin)
%作用:利用共轭梯度下降法对目标函数进行优化
% Minimize a differentiable multivariate function. 

% [X, fX, i]中的X : 3次线性搜索最优化后得到的权值参数,是一个列向量

% minimize(X, f, length, varargin)中的X : 优化目标,即权值
% minimize(X, f, length, varargin)中的f : 代价函数的名称
% minimize(X, f, length, varargin)中的length : 线性搜索次数
% minimize(X, f, length, varargin)中的varargin : 每层网络对应的节点数Dim和训练数据data

% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, ... )
%
% where the starting point is given by "X" (D by 1), and the function named in
% the string "f", must return a function value and a vector of partial
% derivatives of f wrt X, the "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The parameters P1, P2, P3, ... are passed on to the function f.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% The Polack-Ribiere flavour of conjugate gradients is used to compute search
% directions, and a line search using quadratic and cubic polynomial
% approximations and the Wolfe-Powell stopping criteria is used together with
% the slope ratio method for guessing initial step sizes. Additionally a bunch
% of checks are made to make sure that exploration is taking place and that
% extrapolation will not be unboundedly large.
%
% See also: checkgrad 
%
% Copyright (C) 2001 - 2006 by Carl Edward Rasmussen (2006-09-08).

INT = 0.1;    % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0;                  % extrapolate maximum 3 times the current step-size
MAX = 20;                         % max 20 function evaluations per line search
RATIO = 10;                                       % maximum allowed slope ratio
SIG = 0.1; RHO = SIG/2; % SIG and RHO are the constants controlling the Wolfe-
% Powell conditions. SIG is the maximum allowed absolute ratio between
% previous and new slopes (derivatives in the search direction), thus setting
% SIG to low (positive) values forces higher precision in the line-searches.
% RHO is the minimum allowed fraction of the expected (from the slope at the
% initial point in the linesearch). Constants must satisfy 0 < RHO < SIG < 1.
% Tuning of SIG (depending on the nature of the function to be optimized) may
% speed up the minimization; it is probably not worth playing much with RHO.

% The code falls naturally into 3 parts, after the initial line search is
% started in the direction of steepest descent. 1) we first enter a while loop
% which uses point 1 (p1) and (p2) to compute an extrapolation (p3), until we
% have extrapolated far enough (Wolfe-Powell conditions). 2) if necessary, we
% enter the second loop which takes p2, p3 and p4 chooses the subinterval
% containing a (local) minimum, and interpolates it, unil an acceptable point
% is found (Wolfe-Powell conditions). Note, that points are always maintained
% in order p0 <= p1 <= p2 < p3 < p4. 3) compute a new search direction using
% conjugate gradients (Polack-Ribiere flavour), or revert to steepest if there
% was a problem in the previous line-search. Return the best value so far, if
% two consecutive line-searches fail, or whenever we run out of function
% evaluations or line-searches. During extrapolation, the "f" function may fail
% either with an error or returning Nan or Inf, and minimize should handle this
% gracefully.

if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
if length>0, S='Linesearch'; else S='Function evaluation'; end 

i = 0;                                            % zero the run length counter
ls_failed = 0;                             % no previous line search has failed
[f0 df0] = feval(f, X, varargin{:});          % get function value and gradient
fX = f0;
i = i + (length<0);                                            % count epochs?!
s = -df0; d0 = -s'*s;           % initial search direction (steepest) and slope
x3 = red/(1-d0);                                  % initial step is red/(|s|+1)

while i < abs(length)                                      % while not finished
  i = i + (length>0);                                      % count iterations?!

  X0 = X; F0 = f0; dF0 = df0;                   % make a copy of current values
  if length>0, M = MAX; else M = min(MAX, -length-i); end

  while 1                             % keep extrapolating as long as necessary
    x2 = 0; f2 = f0; d2 = d0; f3 = f0; df3 = df0;
    success = 0;
    while ~success && M > 0
      try
        M = M - 1; i = i + (length<0);                         % count epochs?!
        [f3 df3] = feval(f, X+x3*s, varargin{:});
        if isnan(f3) || isinf(f3) || any(isnan(df3)+isinf(df3)), error(''), end
        success = 1;
      catch                                % catch any error which occured in f
        x3 = (x2+x3)/2;                                  % bisect and try again
      end
    end
    if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end         % keep best values
    d3 = df3'*s;                                                    % new slope
    if d3 > SIG*d0 || f3 > f0+x3*RHO*d0 || M == 0  % are we done extrapolating?
      break
    end
    x1 = x2; f1 = f2; d1 = d2;                        % move point 2 to point 1
    x2 = x3; f2 = f3; d2 = d3;                        % move point 3 to point 2
    A = 6*(f1-f2)+3*(d2+d1)*(x2-x1);                 % make cubic extrapolation
    B = 3*(f2-f1)-(2*d1+d2)*(x2-x1);
    x3 = x1-d1*(x2-x1)^2/(B+sqrt(B*B-A*d1*(x2-x1))); % num. error possible, ok!
    if ~isreal(x3) || isnan(x3) || isinf(x3) || x3 < 0 % num prob | wrong sign?
      x3 = x2*EXT;                                 % extrapolate maximum amount
    elseif x3 > x2*EXT                  % new point beyond extrapolation limit?
      x3 = x2*EXT;                                 % extrapolate maximum amount
    elseif x3 < x2+INT*(x2-x1)         % new point too close to previous point?
      x3 = x2+INT*(x2-x1);
    end
  end                                                       % end extrapolation

  while (abs(d3) > -SIG*d0 || f3 > f0+x3*RHO*d0) && M > 0  % keep interpolating
    if d3 > 0 || f3 > f0+x3*RHO*d0                         % choose subinterval
      x4 = x3; f4 = f3; d4 = d3;                      % move point 3 to point 4
    else
      x2 = x3; f2 = f3; d2 = d3;                      % move point 3 to point 2
    end
    if f4 > f0           
      x3 = x2-(0.5*d2*(x4-x2)^2)/(f4-f2-d2*(x4-x2));  % quadratic interpolation
    else
      A = 6*(f2-f4)/(x4-x2)+3*(d4+d2);                    % cubic interpolation
      B = 3*(f4-f2)-(2*d2+d4)*(x4-x2);
      x3 = x2+(sqrt(B*B-A*d2*(x4-x2)^2)-B)/A;        % num. error possible, ok!
    end
    if isnan(x3) || isinf(x3)
      x3 = (x2+x4)/2;               % if we had a numerical problem then bisect
    end
    x3 = max(min(x3, x4-INT*(x4-x2)),x2+INT*(x4-x2));  % don't accept too close
    [f3 df3] = feval(f, X+x3*s, varargin{:});
    if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end         % keep best values
    M = M - 1; i = i + (length<0);                             % count epochs?!
    d3 = df3'*s;                                                    % new slope
  end                                                       % end interpolation

  if abs(d3) < -SIG*d0 && f3 < f0+x3*RHO*d0          % if line search succeeded
    X = X+x3*s; f0 = f3; fX = [fX' f0]';                     % update variables
    fprintf('%s %6i;  Value %4.6e\r', S, i, f0);
    s = (df3'*df3-df0'*df3)/(df0'*df0)*s - df3;   % Polack-Ribiere CG direction
    df0 = df3;                                               % swap derivatives
    d3 = d0; d0 = df0'*s;
    if d0 > 0                                      % new slope must be negative
      s = -df0; d0 = -s'*s;                  % otherwise use steepest direction
    end
    x3 = x3 * min(RATIO, d3/(d0-realmin));          % slope ratio but max RATIO
    ls_failed = 0;                              % this line search did not fail
  else
    X = X0; f0 = F0; df0 = dF0;                     % restore best point so far
    if ls_failed || i > abs(length)         % line search failed twice in a row
      break;                             % or we ran out of time, so we give up
    end
    s = -df0; d0 = -s'*s;                                        % try steepest
    x3 = 1/(1-d0);                     
    ls_failed = 1;                                    % this line search failed
  end
end
fprintf('\n');

 

 

参考文献

Deep learning:三十五(用NN实现数据降维练习);      
 
Deep learning:三十四(用NN实现数据的降维);       
 
Reducing the dimensionality of data with neural networks;     
 
 supporting online material (pdf) ;
 
 

 

转载于:https://www.cnblogs.com/dmzhuo/p/5072808.html

你可能感兴趣的:(Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记...)