声明:博文转自https://blog.csdn.net/mr_hhh/article/details/78490576
一、首先看一个比较简洁明了的协方差计算介绍:
1. 协方差定义
X、Y 是两个随机变量,X、Y 的协方差 cov(X, Y) 定义为:
其中,
2. 协方差矩阵定义
矩阵中的数据按行排列与按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个observation(or sample),那么每一列就是一个随机变量。
协方差矩阵:
协方差矩阵的维度等于随机变量的个数,即每一个 observation 的维度。在某些场合前边也会出现 1 / m,而不是 1 / (m - 1).
3. 求解协方差矩阵的步骤
举个例子,矩阵 X 按行排列:
1. 求每个维度的平均值
2. 将 X 的每一列减去平均值
其中:
3. 计算协方差矩阵
---------------------
作者:Rise_1024
来源:CSDN
原文:https://blog.csdn.net/mr_hhh/article/details/78490576
版权声明:本文为博主原创文章,转载请附上博文链接!
二、再来看一下协方差矩阵的意义:
协方差代表的意义是什么?
在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:
情况一,如上, 当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大 Y 也越大, X 越小 Y 也越小,这种情况,我们称为“正相关”。
情况二, 如上图, 当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关”。
情况三,如上图, 当X, Y 的联合分布像上图那样时,我们可以看出:既不是X 越大Y 也越大,也不是 X 越大 Y 反而越小,这种情况我们称为“不相关”。
怎样将这3种相关情况,用一个简单的数字表达出来呢?
在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0;
在图中的区域(2)中,有 X
在图中的区域(3)中,有 X
在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0。
当X 与Y 正相关时,它们的分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 。
当 X与 Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有(X-EX)(Y-EY)<0 。
当 X与 Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布几乎一样多,所以平均来说,有(X-EX)(Y-EY)=0 。
所以,我们可以定义一个表示X, Y 相互关系的数字特征,也就是协方差
cov(X, Y) = E(X-EX)(Y-EY)
当 cov(X, Y)>0时,表明 X与Y 正相关;
当 cov(X, Y)<0时,表明X与Y负相关;
当 cov(X, Y)=0时,表明X与Y不相关。
这就是协方差的意义。
三、此部分进行更系统的说明:
声明:博文转自 https://blog.csdn.net/ybdesire/article/details/6270328
协方差的定义
对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。
记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定
则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4个样本,每个样本都是二维的,所以只可能有X和Y两种维度。所以
用中文来描述,就是:
协方差(i,j)=(第i列的所有元素-第i列的均值)*(第j列的所有元素-第j列的均值)
这里只有X,Y两列,所以得到的协方差矩阵是2x2的矩阵,下面分别求出每一个元素:
所以,按照定义,给定的4个二维样本的协方差矩阵为:
用matlab计算这个例子
z=[1,2;3,6;4,2;5,2]
cov(z)
ans =
2.9167 -0.3333
-0.3333 4.0000
可以看出,matlab计算协方差过程中还将元素统一缩小了3倍。所以,协方差的matlab计算公式为:
协方差(i,j)=(第i列所有元素-第i列均值)*(第j列所有元素-第j列均值)/(样本数-1)
下面在给出一个4维3样本的实例,注意4维样本与符号X,Y就没有关系了,X,Y表示两维的,4维就直接套用计算公式,不用X,Y那么具有迷惑性的表达了。
(3)与matlab计算验证
Z=[1 2 3 4;3 4 1 2;2 3 1 4]
cov(Z)
ans =
1.0000 1.0000 -1.0000 -1.0000
1.0000 1.0000 -1.0000 -1.0000
-1.0000 -1.0000 1.3333 0.6667
-1.0000 -1.0000 0.6667 1.3333
可知该计算方法是正确的。我们还可以看出,协方差矩阵都是方阵,它的维度与样本维度有关(相等)。参考2中还给出了计算协方差矩阵的源代码,非常简洁易懂,在此感谢一下!
参考:
[1] http://en.wikipedia.org/wiki/Covariance_matrix
[2] http://www.cnblogs.com/cvlabs/archive/2010/05/08/1730319.html
---------------------
作者:ybdesire
来源:CSDN
原文:https://blog.csdn.net/ybdesire/article/details/6270328
版权声明:本文为博主原创文章,转载请附上博文链接!