The only difference between easy and hard versions is constraints.
You are given a sequence a consisting of n positive integers.
Let’s define a three blocks palindrome as the sequence, consisting of at most two distinct elements (let these elements are a and b, a can be equal b) and is as follows: [ a , a , … , a ⏟ x , b , b , … , b ⏟ y , a , a , … , a ⏟ x \underbrace{a,a,…,a}_x,\underbrace{b,b,…,b}_y,\underbrace{a,a,…,a}_x x a,a,…,a,y b,b,…,b,x a,a,…,a]. There x,y are integers greater than or equal to 0. For example, sequences [], [2], [1,1], [1,2,1], [1,2,2,1] and [1,1,2,1,1] are three block palindromes but [1,2,3,2,1], [1,2,1,2,1] and [1,2] are not.
Your task is to choose the maximum by length subsequence of a that is a three blocks palindrome.
You have to answer t independent test cases.
Recall that the sequence t is a a subsequence of the sequence s if t can be derived from s by removing zero or more elements without changing the order of the remaining elements. For example, if s=[1,2,1,3,1,2,1], then possible subsequences are: [1,1,1,1], [3] and [1,2,1,3,1,2,1], but not [3,2,3] and [1,1,1,1,2].
The first line of the input contains one integer t (1≤t≤1e4) — the number of test cases. Then t test cases follow.
The first line of the test case contains one integer n (1≤n≤2e5) — the length of a. The second line of the test case contains n integers a1,a2,…,an (1≤ai≤200), where ai is the i-th element of a. Note that the maximum value of ai can be up to 200.
It is guaranteed that the sum of n over all test cases does not exceed 2e5 (∑n≤2e5).
For each test case, print the answer — the maximum possible length of some subsequence of a that is a three blocks palindrome.
6
8
1 1 2 2 3 2 1 1
3
1 3 3
4
1 10 10 1
1
26
2
2 1
3
1 1 1
7
2
4
1
1
3
简单困难就是数据量不同,这边直接挂一个困难的代码,我的方法都一样~
用 v e c t o r vector vector 记录每个数出现的位置,我们考虑固定两端的数,求中间出现的数的数量的最大值,可以用二分快速求得:
比如下面的一组数(下标从1开始):
1 1 2 2 3 2 1 1
第一对 1 1 1 的位置, l = 1 , r = 8 l=1,r=8 l=1,r=8, u p p e r _ b o u n d upper\_bound upper_bound 求得大于 l l l 的 2 2 2 的下标为0,大于 r r r 的 2 2 2 的下标为3(注意找不到返回end()),所以 a n s = 2 ∗ 1 + 3 − 0 = 5 ans=2*1+3-0=5 ans=2∗1+3−0=5
第二对 1 1 1 的位置, l = 2 , r = 7 l=2,r=7 l=2,r=7, u p p e r _ b o u n d upper\_bound upper_bound 求得大于 l l l 的 2 2 2 的下标为0,大于 r r r 的 2 2 2 的下标为3(注意找不到返回end()),所以 a n s = 2 ∗ 2 + 3 − 0 = 7 ans=2*2+3-0=7 ans=2∗2+3−0=7
⋮ \vdots ⋮
以此类推
每找一对就更新一下答案即可,AC代码如下:
#include
using namespace std;
typedef long long ll;
int main(){
int n,k,t;
scanf("%d",&t);
while(t--){
vector<int>v[205];
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&k);
v[k].push_back(i);
}
int ans=0;
for(int i=1;i<=200;i++){
int num=v[i].size();
if(num==0) continue;
ans=max(ans,num);
for(int j=0;j<v[i].size()/2;j++){
int l=v[i][j],r=v[i][num-j-1];
for(int k=1;k<=200;k++){
if(k==i) continue;
int pos1=upper_bound(v[k].begin(),v[k].end(),l)-v[k].begin();
int pos2=upper_bound(v[k].begin(),v[k].end(),r)-v[k].begin();
ans=max(ans,(j+1)*2+pos2-pos1);
}
}
}
printf("%d\n",ans);
}
return 0;
}